期刊文献+

生活垃圾灰渣增强铝基复合材料的性能 被引量:2

Mechanical Properties of Al/ Bottom Ash in Municipal Solid Waste Incinerator Composites
下载PDF
导出
摘要 研发了以生活垃圾焚烧灰渣为增强相 ,制备铝 /生活垃圾灰渣复合材料的新工艺 .对铝与生活垃圾灰渣配比、烧结温度、保温时间等因素对铝 /生活垃圾灰渣复合材料的性能影响进行了实验研究 .试验表明 :当铝与生活垃圾灰渣配比为 8:2 ,烧结温度为 90 0℃ ,保温时间为 1 .5h ,在纯N2 保护性气氛的条件下制得的复合材料具有良好的机械性能 ,如热膨胀系数为 0 .3,密度为2 .43g/cm3,弹性模量为 30 1 4.3MPa ,耐磨性能比铝镁合金提高了 1 . A type of composite combining Al powder with the bottom ash in municipal solid waste incinerator is developed through liquid phase sintering powder metallurgy. The effect on the performance of these composite materials with the ratio of ash/Al, sintered temperature and residing time are experimentally examined. The experimental results indicate that the composites enjoy excellent mechanical properties when the ratio of ash/Al is 8:2, and the materials are sintered at 900℃ residing time of 1.5?hr in pure N 2 atmosphere. Under these conditions, the properties of the composites are expected to reach as following: thermal expansion coefficient of 0.3, density of 2.43 g/cm 3, elastic modulo of 3?014.3?MPa . Moreover, the wear resistance of these composites is 2.3 times higher than that of aluminum-magnesium alloy.
出处 《昆明理工大学学报(理工版)》 2004年第4期10-14,27,共6页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 云南省自然科学基金 (项目编号:2 0 0 0E0 0 0 3R) 云南省科技攻关 (项目编号 :2 0 0 1GG19)课题
关键词 铝粉 生活垃圾灰渣 金属基复合材料 液相烧结 aluminum powder the bottom ash in municipal solid waste metal matrix composite liquid sintering
  • 相关文献

参考文献3

二级参考文献34

  • 1姚泾利,包洪平,任军峰,孙六一,马占荣.鄂尔多斯盆地奥陶系盐下天然气勘探[J].中国石油勘探,2015,20(3):1-12. 被引量:54
  • 2金之钧,朱东亚,胡文瑄,张学丰,王毅,闫相宾.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253. 被引量:209
  • 3[3]Zheng W M, Lesperance G, Suery M. Effect of thermomechanical processing on the microstructure and mechanical properties of Al-Mg/SiC and Al-Mg/Al2O3 composite part 3: Fracture mechanisms of the composite [J]. Mater Sci & Eng, 1996, 214A(1/2): 104-114.
  • 4[4]Leroy G, Embury J D, Edward G. A model of ductile fracture based on the nucleation and growth of voids [J]. Acta Metal, 1981, 29(7): 1509-1522.
  • 5[5]Christman T, Needleman T, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites [J]. Acta Metall, 1989, 37(11): 3029-3050.
  • 6[6]Liu D S, Lewandowski J J. The effects of superimposed hydrostatic pressure on deformation and fracture: part 2. Particulate-reinforced 6061 composites [J]. Metall Trans, 1993, 24A(3): 609-615.
  • 7[7]Somerday B P, Leng Y, Gangloff R P. Elevated temperature fracture of particulate-reinforced aluminum, Part Ⅱ: micromechanical modeling [J]. Fatigue Fract Engng Mater & Struct, 1995, 18(9): 1032-1050.
  • 8[8]Somerday B P, Gangloff R P. Global constraint-insensitive fracture in SiC particulate-reinforced AA 2009 [J]. Metall & Mater Trans, 1994, 25(7A): 1471-1479.
  • 9[9]Zheng M, Luo Z J, Zheng X. A new damage model for ductile materials [J]. Engng Fract Mech, 1992, 41(1): 103-110.
  • 10[10]Shi Y W. Critical void growth for ductile rupture of mild steel welds [J]. Engng Fract Mech, 1989, 34(4): 901-907.

共引文献37

同被引文献151

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部