期刊文献+

采用自举技术的不完全绝热电路 被引量:1

Bootstrapped partially-adiabatic circuits
原文传递
导出
摘要 为了大规模集成电路的低能耗应用,提出了一种不完全绝热电路——自举能量回收逻辑电路(bootstrapenergyrecoverylogic,BERL)。该电路采用二相无交叠功率时钟。由于采用自举技术,使负载的冲放电过程不会产生非绝热损失,并且输出开关的导通电阻变小,使绝热损失降低。为了比较BERL电路与静态CMOS电路及PAL-2n绝热电路的能耗,设计了反相器链电路。Hspice软件仿真结果表明,BERL电路的工作频率可以超过400MHz。在10~100MHz下,BERL能耗只有静态CMOS电路的25%~33%。相对于PAL-2n电路,BERL也有较低的能耗。在200MHz下,BERL能耗只有PAL-2n的50%。负载越重,BERL电路的低能耗优势越明显。 A partially-adiabatic circuit, the bootstrap energy recovery logic (BERL), was developed to reduce energy losses in low power applications in large-scale integrated circuit. The BERL circuit uses a two-phase, non-overlapped power clock. With the bootstrap technique, the circuit has no non-adiabatic losses during the energy transfer of the output load. In addition, the turn-on resistance of the switch is reduced, which reduces the adiabatic losses. An inverter chain was designed to compare the energy losses of BERL, static CMOS (complementary metal-oxide semiconductor), and PAL-2n (pass-transistor adiabatic logic). Hspice programme simulations showed that the BERL circuit operates even at frequencies over 400 MHz. At 10~100 MHz, BERL dissipates only 25% to 33% of the energy dissipated by a static CMOS. At 200 MHz, BERL dissipates only 50% of the energy dissipated by PAL-2n. The energy performance of the BERL circuit is more excellent with larger load.
作者 杨骞 周润德
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第7期981-983,共3页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(59995550-1) 国家教育振兴计划项目
关键词 大规模集成电路 绝热电路 自举技术 能量回收 低功耗 large-scale integrated circuit adiabatic circuits bootstrap technique energy recovery low power
  • 相关文献

参考文献6

  • 1Athas W, Svensson L, Koller J, er al. Low power digital systems based on adiabatic-switching principles [J]. IEEE Trans on VLSI Systems, 1994, 2(4): 398-407.
  • 2Moon Yong, Jeong Deog-Kyoon. An efficient charge recovery logic circuit [J]. IEEE J Solid-State Circuits, 1996, 31(4): 514-522.
  • 3Oklobd zija V G, Maksimovic D, Lin F. Pass-transistor adiabatic logic using single power-clock supply [J]. IEEE Trans on Circuits and Systems-II: Analog and Digital Signal Processing, 1997, 44(10): 842-846.
  • 4Liu F, Lau K T. Pass-transistor adiabatic logic with NMOS pull-down configuration [J]. Electronics Letters, 1998, 34(8): 739-741.
  • 5Athas W, Svensson L, Tzartzanis N. A resonant signal driver for two-phase, almost-non-overlapping clocks [A]. 1996 IEEE Int Symp on Circuits and Systems [C]. New York: IEEE Press, 1996. 129-132.
  • 6Lim J, Kim D-G, Chae S-I. Reduction in energy consumption by bootstrapped nMOS switches in reversible adiabatic CMOS circuits [J]. IEE Proc: Circuits, Devices & Systems, 1999, 146(6): 327-333.

同被引文献5

  • 1DAVARI B. CMOS scaling for high performance and low power the next ten years[J]. Proe.of the IEEE, 1995,83 (4):595-606.
  • 2YO Y M,DENG K J. An efficient charge recovery logic circuit[J]. IEEE journal of solid-state circuits, 1996,3i (4): 514-522.
  • 3NG K W, LAU K T, Improved PAL-2N logic with complementary pass-transistor logic evaluation tree[J]. Mciroelectronics Journal, 2000,31 (1) :55- 59.
  • 4WATKINS B G. A low-power multiphase circuit technique [J]. IEEE journal of solid-state circuits, 1967,2(4):213- 220.
  • 5罗家俊,李晓民,仇玉林,陈潮枢.一种新型的绝热低功耗逻辑电路[J].固体电子学研究与进展,2003,23(2):225-228. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部