期刊文献+

超塑性本构模型材料参数识别方法研究 被引量:5

MATERIAL PARAMETER IDENTIFICATION OF SUPERPLASTIC CONSTITUTIVE RELATION
下载PDF
导出
摘要 金泉林等提出的超塑性本构关系考虑了三种微观变形机制和晶粒生长过程,但单纯依靠实验很难准确的测定该本构关系的材料参数。应用遗传算法和Levenberg-Marquardt算法,以Ti-6Al-4V为例,识别该超塑性本构关系中的材料参数。计算结果和实验结果符合的很好。最后讨论了各种微观变形机制的体积分数与应变、应变率和晶粒尺寸之间的关系,发现在大部分情况下扩散蠕变机制对超塑变形的贡献可以忽略。 The superplastic constitutive relation developed considers three types of microscopic deformation mechanisms and the grain growth process. However, the material parameters are difficult to identify by experiment only. By means of genetic algorithm and Levenberg-Marquardt algorithm, the material parameters included in the superplastic constitutive relation are identified. An example of Ti-6Al-4V alloy is given. The calculated curves are in agreement with those of the experiments very well. The volume fraction variations of microscopic deformation mechanisms corresponding with strain, strain rate and grain size are discussed. It is found that the contribution due to the diffusive creep deformation mechanism can be neglected in most cases.
出处 《工程力学》 EI CSCD 北大核心 2004年第4期17-21,共5页 Engineering Mechanics
基金 973项目"材料先进制备 成形与加工科学基础"(G2000067208-2)
关键词 遗传算法 LEVENBERG-MARQUARDT算法 超塑性本构关系 参数识别 反分析 Deformation Genetic algorithms Grain growth Optimization Superplasticity Volume fraction
  • 相关文献

参考文献8

  • 1[1]Jin Quanlin, Hai Jintao. Superplastic constitutive relation and its application [J]. Materials Science Forum, 1997, 243-245: 179-184.
  • 2[2]Gelin J C, Ghouati O. An inverse solution procedure for material parameters identification in large plastic deformations [J]. Communications in Numerical Methods in Engineering, 1996, 12(3):161-173.
  • 3[3]Moré J J. The Levenberg-marquardt algorithm: Implementation and Theory[A]. Waston G. A, Lecture Notes in Mathematics 630: numerical analysical [C]. Berlin: Springer-Verlag, 1978. 105-116.
  • 4[4]Mahnken R, Stein E. Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations [J]. International Journal of Plasticity, 1996, 12(4): 451-479.
  • 5[5]Herrera F, Lozano M, Verdegay J L. Tackling real-coded genetic algorithms: operators and tools for behavioral analysis[J]. Artificial Intelligence Review, 1998, 12(4): 265-319.
  • 6[7]Ghosh A K. Characterization of superplastic behavior of metals [A]. Hamilton. C. H. & Paton, N. E., Superplastic forming of structural alloys[C]. The Mmetallurgical Society of AIME, 1982. 83-105.
  • 7[8]D P Bertsekas. Projected newton methods for optimization problems with simple constraints[J]. SIAM Journal Control and Optimization, 1982, 20(2): 221-246.
  • 8[9]Ghosh A K, Hamilton C H. Mechanical Behavior of hardening Characteristics of a Superplastic Ti-6Al-4V Alloy [J]. Metallurgical Transactions A, Physical Metallurgy and Materials Science, 1979, 10A(6): 699-706.

同被引文献79

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部