期刊文献+

大电流密度碳纳米管阴极的生长及场发射性能研究 被引量:5

CVD Growth and Field-emission of Carbon Nanotubes as a Large Current Density Cathode
下载PDF
导出
摘要 研究了碳纳米管作为大电流密度场发射阴极的CVD生长情况与场发射性能。结果表明,通过CVD生长的碳纳米管的直径与催化剂颗粒的直径相近,其生长方向是随机的。根据薄膜厚度与催化剂颗粒的关系,认为通过控制催化剂薄膜的厚度可能会达到调节碳纳米管直径的目的。在实验中获得的碳纳米管具备了良好的场发射性能,在直径为0.13mm的圆形面积上获得的碳纳米管场发射平均电流密度达到1.28A/cm2。 This paper presents the CVD growth and the field-emission of carbon nanotubes as a large current density cathode. The diameters of carbon nanotubes are directly related to the sizes of catalyst particles with random growing direction. Based on the theory of grain growth in thin films, we suggest the adjustment of diameters of carbon nanotubes is possible by changing the thickness of catalyst thin films. The carbon nanotubes with good field-emission is obtained. The average current density of carbon nanotubes grown on a circular area with 0.13 mm diameter is 1.28 A/cm^2.
出处 《液晶与显示》 CAS CSCD 2004年第4期249-252,共4页 Chinese Journal of Liquid Crystals and Displays
基金 "973"国家重大基础研究计划资助项目(No.2003CB314706) 教育部博士点基金资助项目(No.20030286003) 国家大功率微波重点实验室基金资助项目 东南大学科技基金资助项目(No.9206001270 No.9206001271)
关键词 碳纳米管 场发射 CVD carbon nanotubes field-emission CVD
  • 相关文献

参考文献8

  • 1[1]De Heer W A, Chatelain A, Ugarte D. Aligned carbon nanotube films: production and optical and electronic properties[J]. Science,1995, 270(5239): 1179-1180.
  • 2[2]Dai H, Hafner J H, Rinzler A G,et al. Nanotubes as nanoprobes in scanning probe microscopy[J]. Nature, 1997,384(6605) :147-150.
  • 3[3]Dai H, Wong E W,Liebert C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes[J]. Science, 1996,272(5261) : 523-526.
  • 4[4]Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science, 1996,274(5293) :1701-1703.
  • 5姚振华,朱长纯,程敏,刘君华.碳纳米管高温热稳定性与结构的关系[J].液晶与显示,2002,17(1):49-54. 被引量:20
  • 6[6]Milne W I, Teo K B K, Chhowalla M, a al. Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition[J]. Diamond and Related Materials, 2003,12(3-7) :422-428.
  • 7[7]Choi J H, Choi S H, Han J H, et al. Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal[J]. J. Appl. Phys. , 2003,94(1): 487-490.
  • 8[8]Jo S H, Tu Y, Huang Z P, et al. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties[J].Appl. Phys. Lett., 2003,82(20) :3520-3522.

二级参考文献12

  • 1[1]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 2[2]Cornwell C F,Wille L T.Proposed growth mechanism of single-walled carbon nanotubes[J].Chem.Phys.Lett.,1997,278(2):262-266.
  • 3[3]Menon M,Andriotis A N,Froudakis G E.Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls[J].Chem.Phys.Lett.,2000,320(5):425-434.
  • 4[4]Hernández E,Ordejón P.Tight binding molecular dynamics studies of boron assisted nanotube growth[J].J.Chem.Phys.,2000,113(11):3814-3821.
  • 5[5]Brenner D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond film[J].Phys.Revi.B,1990,42(12):9485-9489.
  • 6[6]Iijima S,Brabec C,Maiti A,Bernholc J.Structural flexibility of carbon nanotubes[J].J.Chem.Phys.,1996,104(5):2089-2092.
  • 7[7]Cornwell C F,Wille L T.Low-energy properties of carbon nanotubes[J].Solid State Comm.,1997,101(5):555-559.
  • 8[8]Girifalco L A.Molecular properties of C60 in the gas and solid phases[J].Phys.Chem.,1992,96(7):858-861.
  • 9[9]Smith G D,Jaffe R.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J].Phys.Chem.,1996,100(23):9624-9627.
  • 10[10]Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscale graphitic tubules [J].Phys.Rev.B,1992,45(21):12592-12595.

共引文献19

同被引文献50

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部