摘要
This note studies the existence of positive homoclinic orbits of the second order equation-u″+α(x)u=β(x)u q+γ(x)u p, x∈R,where 1<q<p.Assume that the coefficient functions α(x),β(x) and γ(x) are asymptotically periodic and satisfy0<a≤α(x), 0<γ(x)≤B, -M≤β(x)≤M.A positive homoclinic orbit of the equation is obtained by means of variational methods.
This note studies the existence of positive homoclinic orbits of the second order equation-u″+α(x)u=β(x)u q+γ(x)u p, x∈R,where 1<q<p.Assume that the coefficient functions α(x),β(x) and γ(x) are asymptotically periodic and satisfy0<a≤α(x), 0<γ(x)≤B, -M≤β(x)≤M.A positive homoclinic orbit of the equation is obtained by means of variational methods.
基金
ZJNSF(1 0 0 0 0 5 )