摘要
将高聚物溶液中大分子链尺寸对浓度的依赖关系与Zimm 稀溶液第二维里系数的统计力学硬球模型相结合,借助聚合物的特性粘数、Mark-Houwink方程或分子量,计算聚合物-溶剂体系在稀溶液浓度范围内π/C或H·C/τ的模拟实验值.再以π/C或H·C/τ与浓度线型回归中的始斜率求体系的第二维里系数A_2,计算了30种聚合物-溶剂体系的295个不同分子量的A_2值,结果均与其实验值吻合较好,且明显优于其它理论模型测算的结果.
A method for prediction of second virial coefficient (A2) from intrinsic viscosity and Mark-Houwink equation or molecular weight has been proposed. The A2 values of 295 samples from 30 kinds of polymer/solvent systems (21 polymers and 12 solvents) calculated by this method are in quite good accordance with experimental results. And also, the model presented here is the best one for obtaining A2, compared with other theories and model.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
1993年第11期1614-1618,共5页
Chemical Journal of Chinese Universities
基金
浙江省自然科学基金
关键词
第二维里系数
链团尺寸
高聚物溶液
Polymer solution
Second virial coefficient
Chain dimension