期刊文献+

绿僵菌产海藻糖水解酶培养条件研究(英文) 被引量:2

CULTURE CONDITIONS FOR THE PRODUCTION OF TREHALOSE-HYDROLYSING ENZYMES FROM METARHIZIUM ANISOPLIAE
下载PDF
导出
摘要 丝状真菌绿僵菌能产生一系列二糖水解酶,其中包括海藻糖水解酶。这些酶在绿僵菌对昆虫的致病过程中起着重要的作用。本文研究了不同碳源、氮源对金龟子绿僵菌Metarhizium anisopliae var. acridum菌株CQMa102产生与分解昆虫血淋巴中海藻糖等二糖相关的海藻糖水解酶活性的影响。结果表明:分别以葡萄糖、麦芽糖、蔗糖、山梨醇和可溶性淀粉为碳源,金龟子绿僵菌均可产生海藻糖水解酶,但最佳碳源是可溶性淀粉,因为由其诱导产生的海藻糖水解酶具有最高的总活性和比活性以及更多的同工酶,山梨醇次之。硝态氮(NaNO3)作为唯一氮源时,几乎检测不出海藻糖水解酶活性,而铵态氮((NH4)2SO4)或NaNO3和有机氮(蛋白胨和酵母浸膏)混合氮源作氮源时,海藻糖水解酶活性都很高。在绿僵菌菌丝提取液和滤液的海藻糖水解酶活性比较中发现:CQMa102在多数碳源的培养基中产生的海藻糖水解酶主要分泌到培养基中,仅有少数结合在细胞壁上。 The filamentous fungus Metarhizium produces several extracellular disaccharide-degrading enzymes, including trehalose-hydrolysing enzymes. These enzymes play an important role in the antagonistic action of Metarhizium against most insects. The effects of different carbon sources and nitrogen sources on the production of trehalose-hydrolysing enzymes from Metarhizium anisopliae var. acridum isolate CQMa102 were compared. The results indicated that CQMa102 could produce trehalose-hydrolysing enzymes in medium using glucose, maltose, sucrose, sorbitol or soluble starch as carbon source, but the best carbon source was soluble starch in terms of trehalose-hydrolysing activity and the number of isozymes produced, followed by sorbitol. Among the nitrogen sources tested, ammonium nitrogen and mixture of NaNO3 and organic nitrogen produced higher trehalose-hydrolysing activity than nitrate nitrogen. Comparison of trehalose-hydrolysing enzyme activity between the extracts of mycelia and the culture filtrate showed that the majority of trehalose-hydrolysing enzymes were secreted into liquid culture, only smaller amount of them were bound on cell wall.
出处 《菌物学报》 CAS CSCD 北大核心 2004年第3期403-411,共9页 Mycosystema
基金 Supported by the National Natural Science Foundation of China (No.30170034) and the High Technology Research and Development Project of China (2001AA246051)
关键词 金龟子绿僵菌 碳源 氮源 同工酶 海藻糖水解酶 丝状真菌 Metarhizium anisopliae var. acridum, carbon source, nitrogen source, isozyme
  • 相关文献

参考文献15

  • 1[1]Becher A, Schloder P, Steele JE, Wegener G, 1996. The regulation of trehalose metabolism in insects. Experientia, 52:433~439
  • 2[2]Bradford MM, 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem, 72:248~254
  • 3[3]E1bein AD, 1974. The metabolism of α,α-trehalose. 4dy Carbohydr Chern Biochem, 30: 227~256
  • 4[4]Hsiaoa YM, Kob JL, 2001.Determination of destruxins, cyclic peptide toxins, produced different strains of Metarhizium anisopliae and their mutants induced by ethyl methane sulfonate and ultraviolet using HPLC method. Toxicon, 39:837~841
  • 5[5]Huülsmann A, Lurz R, Scheffel F, Schneider E, 2000. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. J Bacteriol, 182:6292~6301
  • 6[6]Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF, 1997. Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett,154:165~171
  • 7[7]Lucio AKB, Polizeli ML, Jorge JA, Terenzi HF, 2000. Stimulation of hyphal growth in anaerobic cultures of Mucor rouxii by extracellular trehalose. Relevance of cell wall-bound activity of acid trehalase for trehalose utilization. FEMS Microbiol Lett,182:9~13
  • 8[8]Manchenk GP, 1994. Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press Boca Raton FL. 1~338
  • 9[9]Mavridou A, Cannone J, Typas MA, 2000. Identification of group-I introns at three different positions within the 28S rDNA gene of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Fungal Genet Biol, 31:79~90
  • 10[10]Milner RJ, Staples JA, Lutton GG, 1998.The Selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biol Contr, 11:240~247

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部