期刊文献+

非晶态固体高聚物链构象的随机几何特性

RANDOM GEOMETRY PROPERTIES OF CHAIN CONFORMATION IN AMORPHOUS SOLID POLYMER
下载PDF
导出
摘要 本文尝试建立无规链相似于无规行走的模型,采用随机过程及平均场近似的方法研究非晶态固体高聚物的空间几何结构,如链构象的统计分布等,所得结果表明此模型可以成立,而且还表明此模型可用来描述链构象随机几何特性的若干方面。 In this article the model which we are discussing in an alike model. Each individual chain is regarded as adopting a random coil conformation, a conformation akin to that describable as a three dimensional random walk. The technique of Markov Process and mean field is applied by us. A is a random vector. Random chain and walk are Markov Process. Statistical distribution function of random chain and walk are Gaussian distribution function. The technique of mean field is simply to treat it as uniform distribution of segments over a sphere of radius R. The Gaussian distribution function is a constant within the sphere, zero outside. The total number (intrachain+interchain) of interaction of segments is constant. In amorphous solid polymer, the density profile and repulsive potential are flat, therefore, no potential gradient acts on the chain, the distribution function of chain conformation is determined by disorder.
作者 白哲
机构地区 华中理工大学
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 1993年第3期104-107,共4页 Polymer Materials Science & Engineering
关键词 非晶态 高聚物 链构象 随机过程 amorphoussolids, chain conformation, random walk, stochasticprocesses, mean field approximation, random geometry properties, random chain.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部