期刊文献+

基于门限方案和椭圆曲线密码体制的数据加密方案 被引量:3

A Scheme of Data Encryption Based on Threshold Scheme and Elliptic Curve Cryptosystem
下载PDF
导出
摘要 提出了一种基于(m,n)-门限方案和椭圆曲线密码体制的数据加密方案。在该方案中,用户分为单人用户和群组用户两种类型。群组用户是指由多个(设为n个)参与者组成的一个集体,他们共同分享一个私钥,每个参与者只拥有一个与其他用户不同的私钥的影子。单人用户是指个人用户,其私人密钥为个人所有。 This paper proposes a scheme of data encryption based on the (m,n)-threshold scheme and elliptic curve cryptosystem in which users are handled as an individual-user and a group-user. A group-user is a group made up of many (may be n) participants, each of whom holds a shadow of a common key (private key) different from one another. An individual-user is one who holds the key all by himself.
作者 唐晓东
出处 《计算机工程》 CAS CSCD 北大核心 2004年第10期109-110,182,共3页 Computer Engineering
关键词 (m n)-门限方案 数据加密方案 椭圆曲线密码体制 LaGrange插值公式 椭圆曲线离散对数问题 m,n)-threshold scheme Scheme of data encryption Elliptic curve cryptosystem LaGrange interpolation formula Elliptic curve's discrete logarithm problem
  • 相关文献

参考文献10

  • 1[1]Koblitz N.Elliptic Curve Cryprosystems. Mathematics of Computation, 1987, 48:203-209
  • 2[2]Miller V S.Use of Elliptic Curves in Cryptography. Advances in Cryptology-CRYPTO'85, New York: Spring-Verlag, 1986, LNCS 218:417-426
  • 3[3]Robshaw M,Yin Y.Elliptic Curve Cryptosystems. An RSA Laboratories Technical Note, 1997-06
  • 4[4]IEEE P1363/D13(Draft Version 13). Standard Specifications for Public Key Cryptography. http://grouper. ieee.org/p 1363,1999
  • 5[5]Shamir A.How to Share a Secret. Communications of the ACM, 1979, 24(1 1): 612-613
  • 6[6]Blakley G R.Safeguarding Cryptographic Keys. Proceedings of the National Computer Conference,American Federation of Information Processing Societies, 1979, 48:313-317
  • 7[7]Pollard J M.Monte Carlo Methods for Index Computation(mod p).Mathematics of Computation, 1978, 32:918-924
  • 8[8]Pohlig S C,Hllman M E.An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance. IEEE Transactions on Information Theory, 1978, 24:106-110
  • 9[9]Menezes A L,Okamoto T,Vanstone S A.Reducing Elliptic Curves Logarithms in a Finite Field. IEEE Transactions on Information Theory, 1993, 39(5): 1639-1646
  • 10[10]Smart N P.The Discrete Logarithm Problem of Elliptic Curves of Trace One. H P Laboratories Bristol, HPL-97-128, 1997

同被引文献17

  • 1戴元军,杨成.基于椭圆曲线密码体制的(t,n)门限签密方案[J].计算机应用研究,2004,21(9):142-143. 被引量:12
  • 2刘广,汪朝晖.一种新的椭圆曲线签名方案[J].计算机工程与应用,2005,41(7):140-141. 被引量:2
  • 3殷骏,张颖超.一种基于椭圆曲线的有向门限群签名方案[J].计算机工程与应用,2005,41(8):146-148. 被引量:2
  • 4Steinfeld R,Bull L.Universal Designated-verifier Signatures[C] // Proc.of Advances in Cryptology-Asiacrypt'03.Berlin,Germany:Springer-Verlag,2003.
  • 5Zhang Fanguo,Susilo W.Identity-based Universal Designated Verifier Signature[C] //Proc.of EDC'05 Workshops.Nagasaki,Japan:[s.n.] ,2005.
  • 6Shao Zuhua.Improvement of Digital Signature with Message Recovery and Its Variant Based on Elliptic Curve Discrete Logarithm Problem[J].Computer Standards & Interfaces,2004,27(1):61-69.
  • 7http://www.cnnic.net.cn.
  • 8Zheng Y L. Signeryption and its application in efficient public key solutions [C]. Heidelberg: Springer-Verlag, 1997.
  • 9Arvinderpal S W, Nils Gura, Hans Eberle, et al. Energy analysis of public-key cryptograghy for wireless sensor networks [C]. New York: IEEE Computer Society, 2005.
  • 10Chen T S, Huang K H, Chung Y E A division-of-labor-signature (t, n) threshold-authenticatedencryption scheme with message linkage based on the elliptic curve cryptosystem [C]. New York: IEEE Computer Society, 2004.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部