期刊文献+

预抽取支持向量机的支持向量 被引量:10

Pre-extracting Support Vectors for Support Vector Machine
下载PDF
导出
摘要 训练支持向量机,可以归结为求解二次规划问题,而求解二次规划时的复杂度随着样本数量的增加而显著增长,这样就大大延长了支持向量机的训练时间。为了提高支持向量机的训练速度,根据支持向量机的基本原理,该文提出了一种从给定训练样本中预抽取支持向量的新方法,即两凸包相对边界向量方法(FFMVM),此方法大幅度减小了训练支持向量机的训练样本的数量,从而大大提高了支持向量的训练速度,而支持向量机的分类能力不受任何影响。 Training a support vector machine(SVM) can be viewed as a problem of solving a quadratic programming(QP) problem. But the computation complexity of solving QP will increase greatly with the increasing of the amount of training sample, which will increase the training time of SVM largely. In order to improve the speed of training SVM, according to the fundamental principle of SVM, this paper presents a new method called face to face margin vector method of two convex hull which is able to extract support vectors from given training examples for support vector algorithm. This method reduces the training examples largely and improves the speed of training support vector machine greatly, while the ability of support vector machine to classify is unaffected.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第10期10-11,48,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60275020)
关键词 数据挖掘 支持向量机 分类 相对边界向量 Data mining Support vector machine Classification Face to face margin vector
  • 相关文献

参考文献5

  • 1[1]Zhang Li,Zhou Weida,Jiao Licheng. Pre.-extracting Support Vectors for Support Vector Machinc. 5th International Conference on Signal Proccssing Proceedings, 2000,(3): 1427-143 1
  • 2[2]Zhang Xuegong. Using Class-center Vectors to Build Support Vector Machincs. Neural Networks for Signal Processing IX, 1999:3-11
  • 3[3]Chen Junli, Jiao Licheng. Classification Mechanism of Support Vector Machines. Proceedin gs of ICSP2000,(3): 1556-1559
  • 4[4]Xiao Rong,Wang Jicheng ,Zhang Fuyan.An Approach to Incremental SVM Learning Algorithm. ICTAI, 2000,(1):268-273
  • 5萧嵘,王继成,张福炎.支持向量机理论综述[J].计算机科学,2000,27(3):1-3. 被引量:35

二级参考文献10

  • 1[1]Vapnik V, Lerner A. Pattern Recognition using Generalized Portrait. Automation and Remote Control, 1963,24:6
  • 2[2]Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. , 1971,33(1):82~95
  • 3[3]Wahba G. Spline Models for Observational Data(book).SLAM, CBMS-NSF Regional Conference Series, V59.1990
  • 4[4]Boser B, et al. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh. 1992
  • 5[5]Vapnik V. The Nature of Statistical Learning Theory.Springer-Verlag, New York. 1995
  • 6[6]Keerthi S S, el al. A fast iterative nearest point algorithm for support vector machine classifier design: [Technical Report No. TR-ISL-99-03]. Dept of CSA,IISC,Ranga lore, INDIA. 1999
  • 7[7]Tsuda K. Optimal Hyperplane Classifier with Adaptive Norm: [ETL technical report TR-99-9]. 1999
  • 8[8]Roobaert D, et al. View-based 3D object recognition with Support Vector Machines. In: Proc. IEEE Neural Net works for Signal Processing Workshop. 1999
  • 9[9]Pontil M, et al. On the Noise Model of Support Vector Machine Regression, CBCL Paper # 168,AI Memo # 1851, Massachusetts Institute of Technology, Cambridge. MA, October 1998
  • 10[10]Cristianini N, et al. Dynamically Adapting Kernels in Support Vector Machines Neuro COLT: [Technical Report TR-1998-017]. Royal Holloway College

共引文献34

同被引文献92

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部