期刊文献+

数据去冗余的多尺度多结点技术 被引量:2

Multi-Scale and Many-Knot Spline Technique for Elimination of Data Redundancy
下载PDF
导出
摘要 从多结点样条理论出发 ,提出一种自适应的多层次淘汰冗余数据的算法 ,并通过不同的采样数据对算法进行了有效的论证 充分利用多结点样条函数拟合的基数型、显式计算和局部性等优点 A self adapting and multi scale scheme for washing out redundant data is proposed by utilizing many knot spline theory Validity of the algorithm is demonstrated by testing it with different kinds of sampling data This method takes the full advantage of many knot spline fitting, such as cardinal type, explicit calculation and localization This approach can find application in data compression and its pretreatment process
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第5期619-624,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金 ( 6 0 1330 2 0 10 0 710 87) 国家重点基础研究发展计划项目(G19980 30 6 0 8)资助
关键词 数据冗余 多尺度多结点技术 多结点样条函数拟合 数据压缩 曲线拟合 many knot spline redundancy multi scale refinement curve fitting data compression
  • 相关文献

参考文献9

  • 1Brian Bradie.Wavelet packet based compression of single lead ECG[J].IEEE Transactions on Biomedical Engineering,1996,43(5):493~501
  • 2Chiarantoni E,Fpmarelli G,Vergura S.Redundancy reduction in environmental data set by means of an unsupervised neural networks[A].In:Proceedings of IEEE International Joint Conference on Neural Networks,Honolulu Hawaii,2002.412~416
  • 3Suzaki J,Shimizu E.Multispectral,remotely sensed data compression method using neural networks[A].In:Proceedings of the 17th Asian Conference on Remote Sensing,Colombo,Sri Lanka,1996.I-6-1~I-6-4
  • 4Chaudhuri D,Murthy C A,Chaudhuri B B.Finding a subset of representative points in a dataset[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(9):1416~1424
  • 5齐东旭.关于多结点基数型插值(I)[J].吉林大学自然科学学报,1975,2.
  • 6Qi Dongxu,Gao Mingyan.Many-knot spline interpolation and Boolean surfaces[A].In:Proceedings of International Symposium CADDM,Beijing,1987.255~261
  • 7齐东旭 田自贤 张玉心 等.样条函数在飞机理论外形设计中的应用.飞机设计,1982,:45-51.
  • 8Dahmen W,Goodman T N T,Micchelli A.Compactly supported fundamental functions for spline interpolation[J].Numerische Mathematik,1988,52(6):639~664
  • 9Qi Dongxu,Li Huashan.Many-knot spline technique for approximation of data[J].Science in China(Series E),1999,42(4):383~387

共引文献2

同被引文献19

  • 1齐东旭,李华山.Many-knot spline technique for approximation of data[J].Science China(Technological Sciences),1999,42(4):383-387. 被引量:4
  • 2金涛,阙沛文.基于多节点样条理论的漏磁数据去冗余压缩算法[J].上海交通大学学报,2005,39(4):539-543. 被引量:2
  • 3郭同德,王家耀,王光霞.GIS中曲线误差的模型与试验研究[J].武汉大学学报(信息科学版),2006,31(1):78-81. 被引量:2
  • 4Gerald Farin, Nickolas Sapidis. Curvature and the fairness of curves and surfaces [J]. IEEE Computer Graphics & Applications 1989,9(2) :52 - 57.
  • 5Li Weishi, Xu Shuhong, Zheng Jianmin, et al. Target curvature driven fairing algorithm for planar cubic B-spline curves[J]. Computer Aided Geometric Design, 2004,21 ( 5 ) : 499 - 513.
  • 6Wang Ytflin, Zhao Bingyang,Zhang Luzou, et al.Designing fair curves using monotone curvature pieces [J ]. Computer Aided Geometric Design, 2004,21 (5) : 515 - 527.
  • 7Glen Mttlineux, Sebastian T. Robinson. Fairing point sets using curvatureE JJ. Computer Aided Geometric Design, 2007,39(1 ) : 27 - 34.
  • 8PARK Hyungjun, LEE Joohaeng. B-spline curve fitting based on adaptive curve refinement using dominant points[ J ]. Computer-Aided Design, 2007,39(6)439 - 451.
  • 9Vassilev TI. Fair interpolation and approximation of B-splines by energy minimization and points insertion [ J ]. Computer- Aided Design 1996,28(9) :653 - 760.
  • 10Schweikert DG. An interpolation curve using a spline in tension[ J ]. Journal of Mathematics and Physics, 1966,45 (3) : 312 - 317.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部