摘要
生产总值代表了一个国家的经济增长效应,是衡量国民经济发展情况最重要的一个指标,如果能够对国内生产总值做很好的估计,则对国家经济政策的制订能提供有力的参考意见,因此对国内生产总值的估计有着重大意义。该文把人工神经网络方法中的反向传播算法(Back-Propagation,BP)应用于国内生产总值的估计,解决了一般方法工作量大,各个影响因素之间的非线性关系等问题,并且在处理数据及结果时应用了一些数学方法。
We know that gross domestic product represents economy increasing of a country. It is an important index to scale the development of country's economy. If we can make an efficient estimation, we can provide potent references for developing economic policy. So it is significant to estimate gross domestic product. This paper applies Back-Propagation of artificial network in the estimation of gross domestic product, which settled the limits of common method.
出处
《计算机仿真》
CSCD
2004年第5期165-167,共3页
Computer Simulation