期刊文献+

一种有效的SAR图像分割与目标识别方法 被引量:4

Efficient SAR image segmentation and automatic target recognition approach
下载PDF
导出
摘要 在基于模板匹配的合成孔径雷达(syntheticapertureradar,SAR)目标识别中,一个关键问题就是如何从带有杂波的SAR图像中将目标正确分割出来,以便形成高质量的模板。针对这一问题提出了一种基于对数变换的自适应SAR图像分割方法并将其用于由美国国防高级研究计划署(DefenseAdvancedResearchProjectAgency,DARPA)和空军研究室(AirForceResearchLaboratory,AFRL)提供的实测SAR目标图像识别中。实验结果证明,经有效的目标分割后,不但提高了目标的正确识别率,还有效地提高了对假目标的拒识率,具有良好的鲁棒特性。 In the template-based SAR(synthetic aperture radar) target recognition, a key problem is how to (segment) a target image from a noisy SAR image to form a high quality target template. A simple and efficient target (segmentation) method is proposed and applied to the SAR target recognition. Experimental results with MSTAR ((moving and stationary) target acquisition and recognition) SAR data sets provided by the US DARPA/AFRL ((Defense Advanced) (Research) Projects Agency/Air Force Research Laboratory) are presented to illustrate the performance of the proposed approach.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第6期734-737,767,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(6027204960372034) 国家杰出青年科学基金(60325102)资助课题
关键词 目标分割 模板匹配 合成孔径雷达 目标识别 target segmentation template matching synthetic aperture radar target recognition
  • 相关文献

参考文献6

  • 1Timothy Ross, Stephen Worrell, Vincent Velten, et al. Standard SAR ATR Evaluation Experiment Using the MSTAR Public Release Data Set[J]. SPIE, 1998, 3370: 566-573.
  • 2Mike Bryant, Steve Worrell, Sharon Parker. Class Separability Assessments and MSE Algorithm Robustness[J]. SPIE, 1997, 3070:294-305.
  • 3David Casasent, Satoshi Ashizawa. Synthetic Aperture Radar Detection, Recognition, and Clutter Rejection with New Minimum Noise and Correlation Energy Filters[J]. Opt. Eng., 1997(10):2729-2736.
  • 4Keydel Eric R, Shung Wu Lee, Moore T. MSTAR Extended Operating Conditions, A Tutorial[J]. SPIE, 1996, 2757:228-242.
  • 5Zhao qun,Xu Dongxin,Principe Jose C.Pose Estimation of SAR Automatic Target Recognition[C].Proceedings of Image Understanding Workshop,Monterey,CA.,1998.827-832.
  • 6Zhao Qun,Principe Jose C.Support Vector Machine for SAR Automatic Target Recognition[J].IEEE Trans. on Aerospace and Electronic System ,2001,37(2):643-654.

同被引文献51

  • 1肖志强,鲍光淑.一种从SAR图像中提取城市道路网络的方法[J].测绘学报,2004,33(3):264-268. 被引量:9
  • 2杨文,孙洪,徐新,曹永锋,徐戈.SAR图像目标解译算法研究[J].系统工程与电子技术,2004,26(10):1336-1339. 被引量:5
  • 3胡应添,徐守时,黄戈祥,吴秀清.SAR图像中海上舰船目标自动检测新方法[J].遥感技术与应用,2004,19(6):461-465. 被引量:6
  • 4钟雪莲,王长林,周平,张新征.SAR图像中目标的自动检测与辨别[J].中国图象图形学报,2005,10(6):688-697. 被引量:8
  • 5周杰,彭嘉雄,丁明跃.方向小波变换及其在运动弱目标检测中的应用[J].信息与控制,1996,25(1):21-27. 被引量:5
  • 6CANDES E J, DONOHO D L. Curvelets: A surprisingly effective nonadaptive representation for objects with edges curves and surface [ M]//COHEN A, RABUT C, SCHUMAKER L. Curves and surface fitting. Nashville: Vanderbih University Press, 1999: 123- 143.
  • 7DO M N, VETTERLI M. The contourlet transform: An efficient directional muhi-resolution image representation [ J]. IEEE Transactions on Images Processing, 2005, 14( 12): 2091 -2106.
  • 8da CUNHA A L, ZHOU JIAN-PING, DO M N. The nonsubsampied contourlet transform: Theory, design and applications [ J]. IEEE Transactions on Images Processing, 2006, 5 (10) : 3089 - 3101.
  • 9ZHANG XIAO-PING, DESAI M D. Adaptive denoising based on SURE risk [ J]. IEEE Signal Processing Letters, 1998, 5(10) : 265 - 267.
  • 10DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage [ J]. Journal of the American Statistical Association, 1995, 90(432) : 1200 - 1224.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部