期刊文献+

图像数据挖掘的模型和技术 被引量:5

Frameworks and techniques of image mining
下载PDF
导出
摘要 图像获取和存储技术的进步使人们每天都可以获取大量的包含很多对有用的信息图像数据,但缺乏有效的工具分析这些数据。图像数据挖掘的任务就是分析、提取海量图像中隐含的有用的信息和模式,发现图像数据间的关系。图像数据挖掘并不只是数据挖掘在图像领域的简单应用,它是一门包括计算机视觉,图像处理,图像检索,数据挖掘,机器学习,数据库和人工智能等的综合学科。本文将介绍现有的图像数据挖掘的模型和技术。 Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images reveal large and useful information to human users. But the problem is there are no useful tools to found them. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. We will describe the frameworks and techniques of image mining in this paper.
出处 《西安邮电学院学报》 2004年第3期81-85,共5页 Journal of Xi'an Institute of Posts and Telecommunications
关键词 图像挖掘 图像检索 机器学习 人工智能 image ming image processing image retrieval data ming machine learning artificial intelligence
  • 相关文献

参考文献22

  • 1J. Z. Wang, J. Li et al. System for Screening Objectionable Images Using Daubechies' Wavelets and Color Histograms. Interactive Distributed Multimedia Systems and Telecommunication Services, Proceedings of the Fourth European Workshop (IDMS'97), 1997.
  • 2K. L. Tan, B.C. Ooi and L. F. Thiang. Retrieving similar shapes effectively and efficiently, Multimedia Tools and Applications, Kluwer Academic Publishers,The Netherlands, 2001. [32] K. L Tan, B. C. Ooi and C. Y. Yee. An Evaluation of Color - Spatial Retr
  • 3Mihai Datcu et al. Bayesian Methods: Applications in information aggregation and image data mining. Internatinal Archivers of Photogrammetry and Remote Sensing,Vol. 32, Part 7 - 4 - 3 W6, Valladoloid, Spain, 4 - 4 June, 1999.
  • 4Peter Stanchev et al. Using Image Mining for Image retrieval. IASTED conf. ""C Gibson, S et al. Intelligent mining in image databases, with applications to satellite imaging and to web search, Data Mining and Computational Intelligence"", Springer- Verlag
  • 5M. C. Burl et al. Mining for image content. In Systemics, Cybernetics, and Informatics /Information Systems: Analysis and Synthesis, (Orlando, FL), July 1999.
  • 6J. Zhang, W. Hsu and M. L. Lee. An Informationdriven Framework for Image Mining, in Proceedings of 12th International Conference on Database and Expert Systems Applications (DEXA), Munich, Germany,September 2001.
  • 7S. Haykin. Neural Networks: a comprehensive foundation. Prentice Hall International, Inc. 1999.
  • 8K. Lin, H. V. Jagadish and C. Faloutsos. The TVtree: An index structure for high-dimensional data.The VLDB Journal,1994,3 (4): 517- 542.
  • 9T. Sellis, N. RoussopoulosandC. Faloutsos. TheR+tree: A dynamic index for multi - dimensional objects.In Proc 12th VLDB, 1987.
  • 10C. Ordonez and E. Omiecinski. Discovering association rules based on image content. Proceedings of the IEEE Advances in Digital Libraries Conference (ADL' 99),1999.

同被引文献25

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部