摘要
提出一种基于自适应混沌梯度下降的单目标耦合优化算法 .它采用变步长梯度下降法得到某个局部优化值 ,通过规则来判断其为局部极小值 ,然后利用一个由小到大变化的自适应尺度混沌遍历算法来获得一个更优值来代替局部极小值以跳出局部极小状态 ,全局优化值可以通过这种反复迭代来获得 .仿真结果表明 ,该算法能充分发挥梯度法寻优的快速性和混沌法寻优的全局搜索能力 ,有效地跳出局部极小 。
A mutative scale chaotic gradient descending optimization algorithm based on gradient descending search combined with chaotic search for single objective optimization is presented. A local minimum, which is judged by two rules, is obtained by an improved mutative step gradient descending. A more optimal minimum is obtained to replace the local minimum by a mutative scale chaotic search algorithm which scales are magnified gradually from a small scale in order to escape local minima. The global optimal value will be attained by repeatedly iterating. The simulation result shows that it will make full use of quickness of gradient search and global scope search of chaotic optimization, the algorithm can jump local minimum and attain the global optimal value.
出处
《小型微型计算机系统》
CSCD
北大核心
2004年第7期1326-1328,共3页
Journal of Chinese Computer Systems
基金
国家 973计划 (2 0 0 2 cb3 12 2 0 3 )资助
国家自然科学基金 (5 0 3 740 79)资助
教育部科技研究重点项目(0 2 14 6)资助
湖南省自然科学基金(0 1JJY2 110 )资助
关键词
混沌优化
梯度搜索
组合算法
chaotic optimization
gradient search
combined algorithm