期刊文献+

数据挖掘算法在入侵检测系统中的应用 被引量:7

Application of Association Rules and Sequence Pattern Algorithm in IDS
下载PDF
导出
摘要 数据挖掘可以利用各种分析工具从海量数据中发现模型和数据间的关系并做出预测。针对入侵检测系统的特点 ,将关联规则算法与序列模式算法应用于入侵检测系统中 ,介绍了将适当改进的关联规则Apriori算法与序列模式GSP算法相结合挖掘原始审计数据中频繁模式的过程 。 Data mining can find the relation between pattern and data from the large number of data and the forecast will be made.The application of association rules algorithm and sequence pattern algorithm in IDS is presented.The process integrated frequence pattern from audit data with Apriori algorithm and GSP algorithm,is introduced,and the application of algorithms with extended association rules is also presented.
出处 《计算机应用研究》 CSCD 北大核心 2004年第7期88-90,共3页 Application Research of Computers
基金 国家"8 6 3"基金资助项目 (2 0 0 1AA14 2 0 30 )
关键词 关联规则 序列模式 频繁模式 入侵检测 Association Rules Sequence Pattern Frequence Pattern Intrusion Detection
  • 相关文献

参考文献11

  • 1胡华平,陈海涛,黄辰林,唐勇.入侵检测系统研究现状及发展趋势[J].计算机工程与科学,2001,23(2):20-25. 被引量:53
  • 2[2]Wenke Lee.A Data Mining for Constructing Feature and Model for Intrusion Detection System[D]. Paper of the Degree of Doctor of Philosophy in the Graduate School of Arts and Sciences,COLUMBIA UNIVERSITY,1999,59-62.
  • 3[3]Wenke Lee,et al.Algorithms for Mining System Audit Data[C].Proceedings of,IEEE Symposium on Security and Privacy,1999.
  • 4[4]R Agrawal,et al.Mining Assosiation Rules Between Sets of Items in Large Database[C]. Proc. of the ACM SIGMOD Conference on Management of Data,Washington D.C.,1993.207-216.
  • 5[5]R Agrawal,et al.Mining Sequential Patterns[C].Proceedings of the 11th International Conference on Data Engineering,1995.3-10.
  • 6[6]R Agrawal,R Srikant.Mining Sequential Patterns:Generalizations and Performance Improvements[C]. Proceeding of the Fifth Int'l Conference on Extending Database Technology (EDBT),1996.3-17.
  • 7[7]R Agrawal,et al.The Quest Data Mining System[C].Proc.of the 2nd Int'l Conference on Knowledge Discovery in Databases and Data Mining,Portland,Oregon,August,1996.
  • 8[8]R Agrawal,R Srikant.Mining Generalized Assosiation Rules[C].Proceeding of the 21st Int'l Conference on Very Large Database.Zurich,Switzerland,1995.
  • 9[9]R Agrawal,et al.Fast Algorithms for Mining Association Rules[C].Proceedings of the 20th VLDB Conference,Santiago,Chile,1994.
  • 10[10]Jiawei Han,Jian Pei.Simon Fraser Sequential Pattern Mining:From Shopping History Analysis to Weblog and DNA Mining[Z].University,Canada.

二级参考文献9

  • 1[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 2[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132
  • 3[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999
  • 4[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 5[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994
  • 6[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994
  • 7[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883
  • 8赵海波,李建华,杨宇航.网络入侵智能化实时检测系统[J].上海交通大学学报,1999,33(1):76-79. 被引量:37
  • 9黄辰林,赵辉,胡华平.基于分布自治代理的层次入侵检测系统设计[J].计算机工程与应用,2001,37(6):47-49. 被引量:12

共引文献135

同被引文献21

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部