期刊文献+

基于组合神经网络的聚合物质量预测 被引量:3

Prediction of Polymer Quality Based on Stacked Neural Networks
下载PDF
导出
摘要 介绍了一种将组合神经网络用于聚合物质量预测的方法.由定量数据建立的单一神经网络模型往往缺乏泛化能力,而使用组合神经网络模型则可以显著改善模型的泛化能力.由于在建立组合神经网络模型过程中,合适的组合权重对模型是否具有良好预测性能是非常重要的,因此采用了岭回归方法来选择合适的组合权重.所提出的方法已成功应用于PVC颗粒特性的预测研究中。研究结果表明,与单一神经网络模型相比,组合神经网络模型具有更佳的模型预测精度和鲁棒性. Inferential estimation of polymer quality using stacked neural networks (SNNs) is studied. A single neural network model developed from a limited amount of data usually lacks generalization capability. Model generalization capability can be significantly improved by using SNNs model. Proper determination of the stacking weights is essential for good SNNs model performance, so determination of appropriate weights for combining individual networks using ridge regression is proposed. The proposed technique has been successfully applied to the studies of prediction for properties of PVC grains. The results obtained demonstrate significant improvements in model accuracy and robustness, as a result of using SNNs model, compared to using single neural network model.
出处 《科技通报》 北大核心 2004年第4期298-302,共5页 Bulletin of Science and Technology
基金 国家杰出青年科学基金(20125617) 浙江省自然科学基金资助项目(200024) 高等学校重点实验室访问学者基金资助项目
关键词 高聚物工程 神经网络 预测 岭回归 组合泛化 PVC颗粒特性 polymer engineering neural networks prediction ridge regression stacked generalization properties of PVC grains
  • 相关文献

参考文献8

  • 1庄凌,陈德钊,赵伟祥,张红,胡上序.RBF-CSR方法及其应用于裂解装置建模的研究[J].高校化学工程学报,2002,16(1):64-69. 被引量:9
  • 2Wolpert D H.Stacked generalization [J].Neural Networks,1992,5(2):241-259.
  • 3Sridhar D V,Seagrave R C,Bartlett E B.Process modelling using stacked neural networks[J].AIChE Journal,1996,42(9):2529-2539.
  • 4Hashem S.Optimal linear combinations of neural networks[J].Neural Networks,1997,10(4):599-614.
  • 5Ahmad Z,Zhang J.A comparison of different methods for combining multiple neural networks models [R].Proceedings of the International Joint Conference on Neural Networks,HI,2002.
  • 6Sridhar D V,Bartlett E B,Seagrave R C.Information theoretic approach for combining neural network process models[J].Neural Networks,1999,12(6):915-926.
  • 7Zhang J.Developing robust non-linear models through bootstrap aggregated neural networks[J].Neurocomputing,1999,25(1):93-113.
  • 8Zhang J,Morris A J,Martin E B,et al.Prediction of polymer quality in batch polymerization reactors using robust neural networks [J].Chemical Engineering Journal,1998,69(2):135-143.

二级参考文献1

共引文献8

同被引文献18

  • 1郭小萍,王福利,井元和.基于广义回归神经网络的PVC树脂颗粒特性预测研究[J].聚氯乙烯,2006,34(4):32-34. 被引量:1
  • 2Maggioris A D,Goulas A H,Alexopoulos E G,et al.Prediction of particle size distribution in suspension polymerization reactors:effect of turbulence nonhomogeneity[J].Chem Eng Sci,2000,55(20):4611-4625.
  • 3Kotoulas C,Kiparissides C.A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors[J].Chem Eng Sci,2006,61(2):332-346.
  • 4Alexopoulos A H.;Kiparissides C.On the prediction of internal particle morphology in suspension polymerization of vinyl chloride.Part I:The effect of primary particle size distribution[J].Chem Eng Sci,2007,62(15):3970-3983.
  • 5Kiparissides C,Alexopoulos A.Population balance modeling of particulate polymerization processes[J].Industrial&Engineering Chemistry Research,2004,43(23):7290-7302.
  • 6Ramkrishna D.Population balances:theory and applications to particulate systems in engineering[M].San Diego:Academic Press,2000.
  • 7Qamar S,Warnecke G.Solving population balance equations for two-component aggregation by a finite volume scheme[J].Chem Eng Sci,2007,62(3):679-693.
  • 8Irizarry R.Fast Monte Carlo methodology for multivariate particulate systems-I Point ensemble Monte Carlo[J].Chem Eng Sci,2008,63(1):95-110.
  • 9Alopaeus V,Laakkone N M,Aittama J.Numerical solution of moment-transformed population balance equation with fixed quadrature points[J].Chem Eng Sci,2006,61(15):4919-4929.
  • 10Ng C W,Hussain M A.Hybrid neural network-prior knowledge model in temperature control of a semi-batch polymerization process[J].Chemical Engineering and Processing,2004,43(4):559-570.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部