期刊文献+

组合式再生燃料电池双效氧电极催化剂制备与表征 被引量:1

Preparation and Characterization of the Bifunctional Oxygen Electrode Catalyst for Unitized Regenerative Fuel Cell
下载PDF
导出
摘要 介绍了组合式再生燃料电池基本特点 ,简要回顾了组合式再生燃料电池中双效氧电极催化剂研究现状。利用还原沉积法制备了PtIr/C双效氧电极催化剂 ,对催化剂进行了XRD表征。以三电极体系对催化剂进行了析氧和溶氧双反应的催化活性评价 ,结果表明 :Pt主要催化燃料电池模式下的溶氧反应 。 The characteristic of the unitized regenerative fuel cell and the research actuality of the catalysts used for bifunctional oxygen electrode were reviewed briefly. Three PtIr/C catalysts were prepared by reduction and deposition method. And the catalysts were physically characterized by XRD. The catalysts' electrocatalysis performance was examined in three-electrode system. The results showed that Pt mainly catalyzed the oxygen reduction reaction during fuel cell mode, while Ir mainly catalyzed the oxygen evolution reaction during water electrolysis mode.
出处 《化工进展》 EI CAS CSCD 北大核心 2004年第7期731-735,共5页 Chemical Industry and Engineering Progress
基金 国家自然科学基金 (No 2 0 0 760 2 6 No 5 0 2 3 60 10 ) 国家"863"计划基金资助项目 (No 2 0 0 2AA3 2 3 0 40 ) 上海市国际合作项目 (No 0 2 5 2 0 70 2 1)。
关键词 组合式再生燃料电池 双效氧电极 PtIr/C催化剂 unitized regenerative fuel cell,bifunctional oxygen electrode,PtIr/C catalyst
  • 相关文献

参考文献14

  • 1[2]Bolwin K. [J]. J. Power Sources,1992,40:307~321
  • 2[3]Smith W. [J]. J. Power Sources,2000,86:74~83
  • 3[4]Ledjeff K, Mahlendorf F. [J]. Electrochimica Acta,1995,40(3):315~319
  • 4[5]Baldwin R, Pham M. [J]. J. Power Sources,1990,29: 399~412
  • 5[6]Lehman P A, Chamberlin C E, Pauletto G. [J]. Int. J. Hydrogen Energy,1997,22(5):465~470
  • 6[7]Torres L A, Rodriguez F J. [J]. Int. J. Hydrogen Energy,1998,23(11):1005~1009
  • 7[8]Swetter L L,La Conti A B. [J]. J. Power Sources,1994,47:343
  • 8[9]Ioroi T,Yasuda K. [J]. J. Power Sources,2002,112: 583~587
  • 9[10]Ioroi T,Kitazawa N. [J]. J. Appl. Electrochem.,2001,31:1179~1183
  • 10[11]Ioroi T,Kitazawa N. [J]. J. Electrochem. Soc., 2000,147(6):2018~2022

同被引文献49

  • 1SUN M, LIU H J, LIU Y, et al. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction[J]. Nanoscale, 2015, 7 (4): 1250-1269.
  • 2SHEN M X, RUAN C P, CHEN Y, et al. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. ACS Applied Materials & Interfaces, 2015, 7 (2): 1207-1218.
  • 3YANGY, FEIH, RUANG, etal. Efficient electrocatalyticoxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers[J].AcsNano, 2014, 8 (9): 9518-9523.
  • 4SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334 (6061): 1383-1385.
  • 5LYONS M E G, FLOQUET S. Mechanism of oxygen reactions at porous oxide electrodes. Part 2. Oxygen evolution at RuO2, IrO2 and IrxRul_xO2 electrodes in aqueous acid and alkaline solution[J]. Physical Chemistry Chemical Physics, 2011, 13 ( 12): 5314-5335.
  • 6KOPER M T M. Thermodynamic theory of multi-electron transfer reactions : implications for electrocatalysis[J]. Journal of Electroanalytical Chemistry, 2011, 660 (2): 254-260.
  • 7CRUZ J C, BAGLIO V, SIRACUSANO S, et al. Preparation and characterization of RuO2 catalysts for oxygen evolution in a solid polymer electrolyte[J]. International Journal of Electrochemical Science, 2011, 6 (12): 6607-6619.
  • 8MCCOOL N S, ROBINSON D M, SHEATS J E, et al. A Co404"cubane" water oxidation catalyst inspired by photosynthesis[J]. Journal of the American Chemical Society, 2011, 133 (30): 11446-11449.
  • 9ZHOU X M, XIA Z M, TIAN Z, et al. Ultrathin porous CO304 nanoplates as highly efficient oxygen evolution catalysts[J]. Journal ofMaterialsChemistryA, 2015, 3 (15): 8107-8114.
  • 10SAY J, KWON K, CHEON J Y, et al. Ordered mesoporous Co304 spinels as stable , bifunctional , noble metal-free oxygen electrocatalysts[J]. JournalofMaterials Chemistry, 2013, 1 (34): 9992-10001.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部