期刊文献+

混沌背景下基于RBF神经网络的弱信号检测 被引量:4

RBF neural network-based weak signal detection in chaos
下载PDF
导出
摘要 弱信号检测问题是目标检测中一个重要的研究内容。通常,采用贝叶斯(Bayes)方法来检测目标信号的存在。在本文中利用背景信号为混沌这一先验信息,采用了RBF神经网络对模拟产生的淹没在混沌背景中的暂态信号进行检测,并将该方法与采用BP神经网络时的检测性能进行了比较。仿真实验结果表明,基于RBF神经网络的检测性能优于BP神经网络。 The detection problem of the weak signal is an important aspect in the target detection. In general, the exist of the target is detected by using the Bayes' method. In this paper, the prior information that the background signal is in fact chaotic is exploited and a method for the detection of a transient signal buried in a chaotic background is presented using a RBF neural network. The results are compared to the method using a BP neural network, and they show that the method based on the RBF neural network has a better performance than the one based on the BP neural network.
作者 陈瑛 罗鹏飞
出处 《雷达与对抗》 2004年第2期16-20,共5页 Radar & ECM
关键词 混沌 神经网络 信号检测 chaos neural network signal detection
  • 相关文献

参考文献3

  • 1Takens F. Detecting strange attractor in turbulence. Dynamical Systems and Turbulence. Warwick 1980, D. A. Rand and L. S. Young, Eds.Springer-Verlag. Lecture Notes in Mathematics,1981(898) : 366-381.
  • 2Simon Haykin, XiaoBoLi. Detection of signals in chaos[J]. Proceedings of the IEEE, 1995, 183(1) : 94-122.
  • 3Simon Haykin, Sadasivan Puthusserypady. Chaotic dynamics of sea clutter[ M ]. John Wiley & Sons,Inc, 1999.

同被引文献37

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部