期刊文献+

基于Kalman滤波和Mean Shift算法的人眼实时跟踪 被引量:6

REAL TIME EYE TRACKING BASED ON KALMAN FILTER AND MEAN SHIFT ALGORITHM
原文传递
导出
摘要 非接触式的人眼跟踪方法在一些基于视觉的人机交互应用中具有很重要的意义.但目前的人眼跟踪方法普遍存在着诸如对眼睛的部分遮挡、人脸尺度变化和头部的深度旋转等过于敏感的不足,这就极大地限制了其应用范围.本文提出了一种综合运用Kalman滤波和Mean shift算法的人眼跟踪算法,实验结果验证了该算法对于上面所提到的不足情况具有较强的鲁棒性. Nonintrusive methods for eye tracking are important for many applications of vision-besed man-machine interaction, but one common problem to eye tracking methods proposed so far is their sensitivity to lighting condition change, partial occlusion of eye, significant clutter, face scale variations and head rotations in depth, which limit its application scope. In this paper one eye tracking method is proposed that is based on Kalman filter and mean shift algorithm. The experimental results show this method is robustness to those proposed conditions.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第2期173-177,共5页 Pattern Recognition and Artificial Intelligence
关键词 眼睛定位 眼睛跟踪 KALMAN滤波 Mean SHIFT算法 Eye Detection Eye Tracking Kalman Filter Mean Shift Algorithm
  • 相关文献

参考文献8

  • 1Morimoco C,Kocns D,Amir A,Flickner M.Retcctior.of Eyes and Faces.In:Proc of the Intermational Workshop on Perceptual User Interfaces. Almaden, Spain, 1998, 117- 120.
  • 2Ham A, Flickner M, Es.sa I. Detecting and Tracking Eyes by Using Their Physiological Properties, Dynanaics, and Appearance. In:Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina, 2000, 1 : 163- 168.
  • 3Ji Q, Yang X. Real Time Visual Cues Extraction for Monitoring Driver Vigilance. In: Proc of the International Workshop on Computer Vision Systems. Vancouver, Canada, 2001, 107 - 124.
  • 4Fieguth P, Terzopoulos D. Color-Based Tracking of Heads and Other Mobile Objects at Video Frame Rates. In~ Prcc of the IEEE Conference on Computer Vision and Pattern Recognition. Puerto Rico, 1997, 21 - 27.
  • 5Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift. In: Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island,South Carolina, 2000, Ⅱ: 142 - 149.
  • 6Comaniciu D, Ramesh V. Mean Shift and Optimal Prediction for Efficient Object Tracking. In: Proc of the IEEE International Conference on Image Processing. Vancouver, Canada, 2000,Ⅲ: 7073.
  • 7Djouadi A, Snorrason O, Garber F D. The Quality of Training-Sample Estimates of the Bhattacharyya Coefficient. IEEE Trans on Paltem Analysis and Machine Intelligent, 1990, 12: 92- 97.
  • 8Kailath T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans on Communication Technology,1967, 15:52-60.

同被引文献57

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部