期刊文献+

前馈式神经网络的容错性评估和计算方法的研究

STUDY OF FAULT-TOLERANCE ESTIMATION AND CALCULATION METHOD FOR FEED FORWARD NEURAL NETWORKS
原文传递
导出
摘要 本文研究了前馈式神经网络(NN)的容错性问题,提出了一种用全新的概念评估前馈式NN容错性能的方法.将动力学系统的吸引子和吸引域的概念引入到前馈式NN网络,给出了前馈式NN模型的"吸引子"和"吸引域"的定义,以及描述容错性的指标,并在此基础上推导出一种计算前馈式NN"吸引域"大小的数学方法.该研究使前馈式NN容错性有了基于理论的评估和数学计算方法. This paper studies fault-tolerance problem of feed forward NN, develops a method using the new concepts to estimate fault-tolerance performance of feed forward NN. Based on dynamical system theory, the concepts of attractor and attractive region are introduced to feed forward NN, the definitions of 'attractor' and 'attraction region' of feed forward NN are presented accordingly. Further detailed mathematical derivations of estimating the volume of 'attraction region' of feed forward NN has been presented. The study of this paper has provided a theory framework for evaluation of fault-tolerance of feed forward NN.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第2期201-206,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.59877016)
关键词 神经网络 容错性 吸引域 信息处理 Neural Networks Fault-Tolerance Attractive Region Information Processing
  • 相关文献

参考文献8

  • 1郝培锋,肖文栋,祝钢,徐心和.关于BP网络变结构问题的研究[J].控制与决策,2001,16(3):287-298. 被引量:12
  • 2Atiya A, Ji C. How Initial Conditions Affect Generalization Performance in Large Networks. IEEE Trans on Neural Networks,1997, 8(2): 448-451.
  • 3Kwak N, Choi C. Input Feature Selection for Classification Problerns. IEEE Trans on Neural Networks, 2002, 13( 1 ) : 143 - 159.
  • 4Back A D, Trappenberg T P. Selecting Inputs for Modeling Using Normalized Higher Order Statistics and Independent Component Analysis. IEEE Trans on Neural Networks, 2001, 12(3): 612 -617.
  • 5Yeung D Y. Constructive Neural Network as Estimators of Bayesian Discriminent Function. Pattern Recognition, 1993, 26( 1 ) : 189 -204.
  • 6Mcinemey M, Dhawan A P. Use of Genetic Algorithm with Back Propogation in Training of Feed Forward Neural Networks. In:Proc of the IEEE International Conference on Neural Networks.San Francisco, USA, 1993, 203- 208.
  • 7张承福,赵刚.联想记忆神经网络的若干问题[J].自动化学报,1994,20(5):513-521. 被引量:20
  • 8姜惠兰,孙雅明.基于神经网络实用稳定性理论提高FNN容错性的方法及其在电力系统中的应用[J].中国电机工程学报,2003,23(5):29-34. 被引量:5

二级参考文献12

  • 1张承福,赵刚.联想记忆神经网络的若干问题[J].自动化学报,1994,20(5):513-521. 被引量:20
  • 2Parra X, Catala A. fault torrance in the leaming algorithm of radial basis function networks [C]. Neural Networks, Proceedings of the IJCNN'00,Los. Alamitos Califormia USA,2000,3: 527-532.
  • 3Merchawi N S, Kumara R T, Das C R. A prubabilistic model for faulttolerance of multilayer perceptrons[J]. IEEE Trans. Neural Networks,1996,7(1): 201-205.
  • 4Elsimary H, Darwish A, Mashali S, et al. Performance evaluation of a novel fault tolerance training algorithm[C]. Neural Networks, 1994. IEEE World Congress on Computational Intelligence. IEEE International Conference on,Orlando, FL USA 27 Jun-2 Jul, 1994,2: 856-861.
  • 5Takase H, Kita H, Hayashi T. Weight minimization approach for fault tolerant multi-layer neural networks[C]. Neural Networks, Proceedings of IJCNN'01,Washington, USA July 15-19,2001,4: 2656-2660.
  • 6Phatak D S, Tchemev E. Synthesis of fault tolerant neural networks[C].Neural Networks, Proceedings of IJCNN '02, ,Honolulu, Hawii, USA May 12-17, 2002,2: 1475-1480.
  • 7张承福,Theor Phys,1992年,18卷,233页
  • 8Erol Gelenbe,IEEE Trans Neural Networks,1999年,10卷,1期,3页
  • 9Cho Sungzoon,IEEE Trans Neural Networks,1997年,8卷,4期,874页
  • 10Hao Peifeng,Proc'96 Int Conf High New Technology and Traditional Industry,1996年

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部