期刊文献+

集函数多目标规划的最优性充分条件

Sufficient optimality conditions for multiobjective programming involving n-set functions
下载PDF
导出
摘要 在较弱凸性条件下 ,研究了一类可微 n-集函数多目标规划问题的可行解是弱有效解的最优性充分条件。首先 ,对已知集 X的子集的σ-代数 A的 n-折积 An,定义了伪度量 d( R,S) ,并给出了 n-折积 An 的子集 S的特征函数〈h,Is〉;其次 ,通过特征函数给出了集函数在子集 S°上可微的定义及集函数在子集 S°上关于第 i个变量 Si 的偏导数定义 ;再次 ,给出了多目标规划问题 ( VP)的弱有效解的概念 ;最后 ,分别在目标函数和约束函数 3种较弱凸性条件下 ,给出了集函数多目标规划问题的可行解是弱有效解的 3个最优性充分条件。 This paper studied a class of multiobjective programing problems involving differentiable n-set functions,and obtained sufficient optimality conditions for weak efficient solutions under generalized convexity conditions.Firstly,we definited pseudometric d(R,S) for n-foldproduct of σ-algebra A of subsets of a given set X,and definite indicator function <h,I s> of subset S of An;Secondly,we gave the concept of differentiable of set function at subset S° and concept of partial derivative at S° with respect to the ith argument S i through in dicator function;Thirdly,we defound the weak efficient solution of (VP);Finally,we obtained three sufficient optimality conditions for weak efficient solutions under generalized convexity conditions.
机构地区 长安大学理学院
出处 《长安大学学报(建筑与环境科学版)》 2004年第2期75-77,共3页
关键词 集函数 多目标规划 多目标规划 特征函数 子集 weak efficient solutions differentiable n-set functions multiobjective programming
  • 相关文献

参考文献6

  • 1MORRIS R J T.Optimal constrained selection of a measurable subset[J].J.Math.Anal.Apple,1979,70(2):546-562.
  • 2ZALMAI G J.Sufficiency criteria and duality for nonlinear programs involving n-set functions[J].JMAA,1990,149(1):322-338.
  • 3BECTOR C R.Efficiency and duality for nonlinear multiobjective programming involving n-set functions[J].JMMA,1994,182(2):486-500.
  • 4BECTOR C R,SINGH M.Duality for multiobjective B-vex programming involving n-set functions[J].JMAA,1996,202(3):701-726.
  • 5GORLEY H W.Optimization theory for n-set functions[J].JMAA,1987,127(1):193-205.
  • 6VASILE PREDA.On duality of multiobjective fractional measurable subset selection problems[J].JMAA,1995,196(2):514-525.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部