期刊文献+

基于宏块特征量化的视觉自适应实时监控方法 被引量:3

Macroblock feature quantification based real-time adaptive visual surveillance
下载PDF
导出
摘要 提出一种新的基于宏块特征量化的视觉自适应实时监控方法,它采用考虑宏块特征空域关系和类似竞争分类的消除干扰策略,由宏块特征量化将对像素点的操作转变为对宏块直方图特征点的操作,通过兴趣点的提取使得对每帧的计算速度成数量级地提高.研究表明,该方法仅使用高、中、低3种外部阈值设置,便可使监控模型在几乎无参数调节下稳定运行,在动态图象序列中,能有效消除日光灯频闪光线、部分运动阴影以及局部小扰动带来的区域干扰.实验结果显示,该方法能够实现对安全防范中闯入类的有效监控,且目标跟踪快捷稳定,具有较高的工程实用价值. A real-time visual surveillance method is presented, which is based on macroblock features quantification. The frame is divided into tiles and their macroblock features are extracted. The pixels operation is transferred to a nested operation of their macroblock feature points. The differences of feature frames are checked to find out residual motion region. The research shows that our novel method is quite effective and efficient in eliminating the region noise caused by fluorescent lamp, local moving shade and dithering in dynamic image sequences. Critical system parameters, such as threshold and processing regions, are adaptive to vary frame rates and computational constraints. According to different environment, it can track motion stably in real-time through a simple choice of high, median or low threshold setting. The experimental results show the promising performance in real-time visual surveillance in a changing environment.
出处 《控制与决策》 EI CSCD 北大核心 2004年第7期782-786,共5页 Control and Decision
关键词 自适应视觉监控 运动跟踪 宏块特征量化 实时 Adaptive systems Image processing Macros Real time systems
  • 相关文献

参考文献7

  • 1[1]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking[A]. Proc IEEE Conf on Computer Vision and Pattern Recognition[C].Colorado, 1999. 246-252.
  • 2[2]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[A]. Proc IEEE Workshop on Applications of Computer Vision[C]. Princeton, 1998. 8-14.
  • 3[3]Bobick A, Davis J. The representation and recognition of action using temporal templates[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267.
  • 4[4]Isaac Cohen, Gérard Medioni. Detecting and tracking moving objects for video surveillance[A]. IEEE Proc Computer Vision and Pattern Recognition[C]. Fort Collins, 1999. 2319-2325.
  • 5[5]Wren C, Azarbayejani A, Darrell T, et al. Pfinder: Real-time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 780-785.
  • 6[6]Zhong Y, Jain A, Dubuisson-Jolly M. Object tracking using deformable templates[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 (5): 544-549.
  • 7[7]Anurag Mittal, Larry S Davis. M2 tracker: A multi-view approach to segmenting and tracking people in a cluttered scene[J]. Int J of Computer Vision, 2003, 51(3): 189-203.

同被引文献21

  • 1吕秋云,张公礼.网络视频监控系统中报警子系统的设计与开发[J].计算机应用与软件,2005,22(3):143-144. 被引量:8
  • 2蔡虹,叶水生,张永.一种基于粗糙-模糊集理论的分类规则挖掘方法[J].计算机工程与应用,2006,42(2):186-187. 被引量:4
  • 3宋绍锋 黄鹰.机场视频监控系统及安防集成[J].安防技术与设计,2009,4.
  • 4李军年.民航机场突发性群体事件的预防与处置[D],四川大学,2010.
  • 5Siu-Yeung Cho. Tommy W S Chow. Chi-tat leung a neu-ral-based crowd estimation by hybrid global learning al-gorithm [J]. IEEE Transactions on Systems Man andCybemetics-Part B: Cybernetics, 1999,29(4):535-547.
  • 6K. Karu, A. K. Jain, R. M. Bolle. Is there any texture inthe images [ J ]. Pattern Recognition,1996,29 (9 ):1437-1446.
  • 7Marana A N, Costa L F, Lotufo R A, et al. On the effi-cacy of texture analysis for crowd monitoring [ J]. Inter-nationalSymposium on Computer Graphics, Image Pro-cessing and Vision,1998:354-361.
  • 8KARU K,JAIN A K,BOLLE R M. Is there any tex- ture in the images [J] Pattern Recognition, 1996,29 (9) .. 1437-1446.
  • 9MARANA A N, COSTA L F,LOTUFO R A, et al. On the efficacy of texture analysis for crowd monito- ring [C]. Rio de Janeiro, Brazil: International Sympo- sium on Computer Graphics, Image Processing and Vision, 1998.
  • 10李军年.民航机场突发性群体事件的预防与处置[M]成都:四川大学,2010.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部