期刊文献+

离散时间奇异系统的可测扰动解耦 被引量:4

Dynamic measurable disturbance decoupling for discrete time singular nonlinear systems
下载PDF
导出
摘要 为离散时间广义非线性控制系统的可测扰动提供一种反演算法.运用一类正则动态补偿器解决了系统的解耦问题,并且证明系统既可利用动态反馈进行解耦,也可利用拟表态反馈进行解耦. A linear algebraic solution of the dynamic disturbance decoupling problem for a singular discrete-time nonlinear system is presented. The solution is to be searched in the class of regular dynamic compensators. It is proved that if the disturbance decoupling problem is solvable by a dynamic state feedback, it is solvable by a quasi-static feedback.
出处 《控制与决策》 EI CSCD 北大核心 2004年第7期787-790,共4页 Control and Decision
基金 国家863计划基金项目(2002AA245101) 国家937计划基金项目(G1999016001).
关键词 离散时间 非线性控制系统 扰动解耦 线性迭代方法 拟静态状态反馈 Discrete time control systems Linear algebra State feedback
  • 相关文献

参考文献8

  • 1周玉成,刘晓平.一类离散时间广义非线性控制系统的动态不可测扰动解耦[J].系统工程理论与实践,1998,18(12):8-13. 被引量:4
  • 2[2]Grizzle J W. A linear algebraic framework for the analysis of dicrete-time nonlinear systems[J]. SIAM J Contr and Optimiza,1993.1026-1044.
  • 3[3]Responek W. Disturbance decoupling via dynamic feedback[A]. Controlled Dynamical Systems[C].Boston: Brikhauser,1991.347-357.
  • 4[4]Huijberts H J C. A nonregular solution of the nonlinear disturbance decoupling problem with an application to a complete solution of the nonlinear model matching problem[J]. SIAM J Contr and Optimiz,1992,30(8):350-366.
  • 5[5]Pereira da Silva P S, Pinto Leite V M. Disturbance decoupling by regular for affine nonlinear systems: A linear algebraic approach[A]. 12th IFAC World Congress[C].Sydney,1993.387-390.
  • 6[6]Moog C H, Perdon A M, Conte G. Model matching and factorization for nonlinear systems: A structural approach[J]. SIAM J Control and Optimez,1991,29(7):769-785.
  • 7[7]Fliegner T, Nijmeiher H. Dynamic disturbance decoupling for nonlinear discrete-time systems[A]. Proc 33rd IEEE Conf on Decision and Control[C].Buena Vista,1994.2:1790-1791.
  • 8[9]Kotta U. Dynamic disturbance decoupling for discrete-time nonlinear systems: The nonsquare and noninvertible case[J].Phys Math,1992,41(7):14-22.

共引文献3

同被引文献42

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部