摘要
文[1]的数值试验表明,Q_1^+—P_1元比其它元更适合于计算高雷诺数问题,是一个非常有应用价值的元。但此元不满足LBB条件,利用一般的误差分析得不到此元数值解的收敛性质。本文利用文[2]的思想,证明了当解较光滑时,能达到最优阶收敛。
In [1] M. Fortin and A. Fortin proposed the element Q1+ - P1 of the mixed finite element method for the Stokes equation. Although it does not satisfy the classical Babuska- Brezzi condition, the numerical results are good and reasonable. In this paper, we analysis this element and get the optimal error estimatewhen the solution
出处
《工程数学学报》
CSCD
1993年第1期45-50,共6页
Chinese Journal of Engineering Mathematics
基金
浙江省自然科学基金