期刊文献+

评价饱和砂土液化过程中小应变到大应变的本构模型(英文) 被引量:21

A constitutive model for evaluating small to large cyclic strains of saturated s and during liquefaction process
下载PDF
导出
摘要 在RambergOsgood模型的基础上,建立了一个实用的能描述饱和砂土从液化前小应变到初始液化后大应变范围的非线性本构模型。该模型主要有三个特点:①采用作者曾提出的移动相态转换线(MPTL)和移动临界状态线(MCSL)概念来较为合理地描述变形过程中的有效应力路径和临界状态;②采用一个应力软化模型来描述剪胀和定义超静孔压变化引起的骨架曲线的软化与硬化;③基于笔者等提出的液化后大变形理论来描述初始液化后产生的大剪切变形。文中通过对室内循环剪切试验结果的模拟,验证了模型的预测能力。该模型适用于水平饱和砂土地基的有效应力地震反应分析。 A new simplified effective stress constitut ive model is presented for evaluating small to large cyclic strains of saturated sand dur ing liquefaction process.It is developed by refining and modifying Ramberg-Osg ood model in the following three aspects:①A formulation for asymptotic movement s of both MPTL(Moving Phase Transformation Line)and MCSL(Moving Critical Stat e Line)is incorporated to accurately describe the effective stress path and the critical stress state;②A stress degradation model is used to describe the stres s-dilatancy and to define the degradation and hardening of the skeleton curve w ith variation of excess pore water pressure;③A new post-liquefaction deformation theo ry is incorporated to model large shear strain response in cyclic undrained loading after initial liquefaction.The results calculated by the proposed model have been compared favorably with experimental observations.The new model is s uitable for dynamic response analysis of level or nearly level saturated sand gr ound.
作者 张建民 王刚
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2004年第4期546-552,共7页 Chinese Journal of Geotechnical Engineering
基金 Supported by Natural Science Foundation of China(59979012)
关键词 砂土 本构模型 液化后大变形 Ramberg—Osgood模型 sand constitutive relationship large shear strain pos t-liquefaction Ramberg-Osgood Model
  • 相关文献

参考文献17

  • 1Ramberg W, Osgood W R. Description of stress-strain curves by three parameters(NACA Tech Note No 902)[R].Washington,D C,1943.
  • 2Richart F E. Some effects of dynamic soil properties on soil-structure interaction[J]. Journal of Geotechnical Engineering Division, ACSE, 1975,101(12):1197-1240.
  • 3Idriss I M, Dobry R, Singh R D. Nonlinear behavior of soft clays during cyclic loading[J]. Journal of Geotechnical Engineering Division, ACSE, 1978,104(12): 1427-1447.
  • 4Ishihara K. Evaluation of soil properties for use in earthquake response analysis[A]. R Dungar,J A Studer, Eds.Geomechanical Modeling in Engineering Practice[C].Rotterdam, The Netherlands:A A Balkema,1986.241-275.
  • 5Kondner R L, Zelasko J S. A hyperbolic stress-strain formulation of sands[A]. Proceedings, 2nd Pan American Conference on Soil Mechanics and Foundation Engi-neering[C]. Sao Paulo, Brazil:Brazilian Association of Soil Mechanics, 1963.289-324.
  • 6Hardin B O, Drnevich V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1972,98(7): 667-692.
  • 7Prevost J H, Keane C M. Shear stress-strain curve generation from simple material parameter[J].Journal of Geotechnical Engineering Division, ACSE, 1990,116(8):1255-1263.
  • 8Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction[J].Journal of Geotechnical Engineering Division, ACSE, 1977,103(6):517-533.
  • 9Richart F E. Some effects of dynamic soil properties on soil-structure interaction[J].Journal of Geotechnical Engineering Division, ACSE, 1975,101(12): 1197-1240.
  • 10Iwasaki T, Tatsuoka F. Effect of grain size on dynamic shear modulus of sands[J].Soils and Foundations, 1977,17(3): 17-35.

同被引文献499

引证文献21

二级引证文献288

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部