期刊文献+

W(x,t)普遍结果的推导

The Derivation of the Universal Result of W (x,t)
下载PDF
导出
摘要 用分离变量法求解数理方程定解问题时,要求其第一、二、三类边界条件必须是齐次的。若为非齐次的,必须寻求恰当的辅助函数w(x,t),进行变换,将其化为齐次的。从稳定条件下的线性非齐次边界条件出发,给出了w(x,t)的统一形式,进而将其推广到非稳定条件下的非齐次边界条件,得到w(x,t)的一般的结果。 When separation variable method is used to solve the fixed solution problem of mathematical equation, the boundary condition of its first, second and third type must be homogeneous. If they are unhomogeneous, proper supplementary function W (x,t) must be found to substitute, then they will be homogenized. In this paper, first, the unified form of W (x,t) is presented on the condition of linear unhomogeneous boundary condition under stable condition. Then, it can be extended into unhomogeneous boundary condition under unstable condition and the general result of can be obeained.
出处 《杭州电子工业学院学报》 2004年第3期1-3,共3页 Journal of Hangzhou Institute of Electronic Engineering
关键词 非齐次边界条件 W(x t) 齐次化 分离变量法 稳定条件 unhomogeneous boundary condition homogenize stable unstable
  • 相关文献

参考文献2

  • 1束仁贵.数学物理方法[M].长春:东北师范大学出版社,1989,10..
  • 2[3]陈庆益.数学物理方程[M].北京:人民教育出版社,1976.53.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部