期刊文献+

含铝碳化硅纤维耐高温性能 被引量:5

HIGH-TEMPERATURE RESISTANCE PROPERTIES OF SILICON CARBIDE FIBERS CONTAINING ALUMINUM
下载PDF
导出
摘要 通过合成陶瓷纤维先驱体聚铝碳硅烷,制备了具有耐高温性能的含铝碳化硅SiC(Al)纤维。SiC(Al)纤维的化学组成为SiC1.15O0.026·Al0.013,主要结构是平均晶粒为95nm的βSiC,O和游离C含量均大大低于nicalon纤维,同时含有微量的Al和少量的αSiC。SiC(Al)纤维的平均直径为13μm,平均抗拉强度为2.3GPa。1400℃氩气中处理1h后,抗拉强度是原始强度的95%以上;1800℃氩气中处理1h后,抗拉强度保留率为71%。纤维的高温稳定性高于nicalon,Hi nicalon等商品SiC纤维,但低于TyrannoSA商品SiC纤维,并且SiC(Al)纤维的高温抗蠕变性能明显高于nicalon纤维。SiC(Al)纤维的高温稳定性取决于其低氧含量、低富碳含量以及异元素Al的助烧结和在高温下抑制SiC晶粒长大的作用,良好的抗蠕变性能决定于其高结晶度和低含量的SiCxOy相。 Fibers of SiC(Al) with superhigh-temperature resistances were prepared by ceramic precursor polyalumicarbosilane (PACS). The composition of SiC(Al) fibers is described as SiC1.15O0.026A10.013 in which there are mainly β-SiC grains in size of 95 nm, small amount of α-SiC, aluminum, SiCxOy phase and free carbon. The average tensile strength of SiC(Al) fibers is 2.3 GPa, with the average fiber diameter of 13 μm. The initial tensile strength of the fibers remains 95% after heat treatment at 1400°C for 1 h in argon. After SiC(Al) fibers were sintered at 1800°C for 1 h in argon, the tensile strength changed to 71% of initial tensile strength. The stability of the SiC(Al) fibers at high-temperature is better than that of nicalon and Hi-nicalon (trade name) , but more inferior than Tyranno SA (trade name). The creep resistance of SiC(Al) fibers at high temperature is obviously better than that of nicalon. Low contents of oxygen and free carbon, the introduction of hetero-elements aluminum acting as both sintering aids and inhibitors to prevent coarseness of SiC crystalline at high temperature are responsible for the high-temperature resistance properties of SiC(Al) fibers. Unique creep resistances of SiC(Al) fibers are related to high crystallinity and low contents of SiCxOy phase.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2004年第7期812-815,共4页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(59972042)资助项目。
关键词 先驱体 聚铝碳硅烷 碳化硅纤维 耐高温 Aluminum Argon Grain size and shape Silicon carbide Sintering Tensile strength
  • 相关文献

参考文献7

  • 1[1]LAINE R M,BABONNEAU F.Preceramic polymer routes to silicon carbide [J].Chem Mater,1993,5: 260-279.
  • 2[2]BIROT M,PILLOT J P,DUNOGUES J.Comprehensive chemistry of polycarbosilane,polysilazane,and polycarbosilazane as precursors of ceramic [J].Chem Rev,1995,95(5):1 443-1 477.
  • 3[4]LIPOWITZ J,RABE J A,ZANGVIL A,et al.Structure and properties of SylramicTM silicon carbide fiber--a polycrystalline [J].Ceram Eng Sci Proc,1997,18(3) :147-157.
  • 4[5]ISHIKAWA T,KOHTOKU Y,KUMAGAWA K,et al.High-strength alkali-resistant sintered SiC fibre stable to 2 200 ℃ [J].Nature,1998,391(19): 773-774.
  • 5[6]DICARLO J A.Creep limitations of current polycrystalline ceramic fibers [J].Compos Sci Technol,1994,51(2) : 213-222.
  • 6[7]YAJIMA S,HASEGAWA X,HAYASHI J,et al.Synthesis of continuous SiC fibers with high tensile strength and modulus[J].J Mater Sci,1978,13:2 569-2 576.
  • 7[8]JOHNSON D W,EVANS A G,GOETTLERRW,et al.Ceramic Fibers and Coatings: Advanced Materials for the TwentyFirst Century[M].Washington D C,USA: National Academy Press,1998.20-36.

同被引文献59

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部