期刊文献+

基于贝叶斯方法的范例检索 被引量:1

A Bayesian Approach for Case Retrieval
下载PDF
导出
摘要 提出了利用贝叶斯概率理论进行范例推理,因为在范例库中进行范例检索是范例推理中的一个非常重要的组成部分。该文中主要考虑的是如何利用贝叶斯方法进行范例检索并提出了一个评估两个范例相似程度的匹配函数。在传统的方法中,可以用欧氏距离等方法来评估两个范例的相似性。在实验中,把这两种方法进行了比较,实验结果表明贝叶斯方法不仅可行,而且比用欧氏距离方法更优。 This paper proposes the Bayesian approach for case-based reasoning, because case retrieval in the case base is an essential part of the case-based reasoning, the paper considers how to use the Bayesian approach for case retrival and proposes a case matching function for evaluating the similarities between the cases.In tradictional approaches to the case retrieval,the Euclidean distance is a very important approach.In the experiment, it compares the two approaches.The results suggest that the Bayesian approach is not only feasible,but also performs much better than the Euclidean distance.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第15期58-59,82,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60273043) 安徽省教育厅资助项目(2002kj004)
关键词 范例推理 贝叶斯方法 范例检索 Case-based reasoning Bayesian approach Case retrieval
  • 相关文献

参考文献7

  • 1Rodriguezl A F, Vadera S, Sucar L E. A Probabilistic Model for Casebased Reasoning. Proceedings of International Conference on CBR,Providence, Rhode Island, USA, David Leake&Enric Plaza, 1997:621
  • 2Tirri H, Kontkanen P, Myllymaki P. A Bayesian Framework for Casebased Reasoning. Proceedings of European Workshop on CBR,Lansanne, Switzerland, Ian Smith&Boi Falting, 1996:413-421
  • 3Heckerrman D, Geiger D, Chickering D M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data.Machine Learning, 1995, 20(3): 197-243
  • 4Kontkanen P, Myllymaki P, Silander T, et al. On Bayesian Case Matching. Proceedings of European Workshop on CBR, 1998:11-24
  • 5Kontkanen P, Myllymaki P, Silander T, et al. Bayes Optimal Instancebased Learning. Proceedings of the 10th European Conference on Machine Learning, Dorint-parkhotel, Chemnitz, Germany, Nedellec and C.Rouveirol, 1998:77-88
  • 6史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 7慕春棣,tsinghua.edu.cn,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5):660-666. 被引量:100

二级参考文献11

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

共引文献123

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部