期刊文献+

一种快速的自适应频繁模式挖掘方法

Adaptive fast algorithm for mining frequent itemset
下载PDF
导出
摘要 提出一种自适应的频繁模式挖掘算法:AD-Mine算法.该算法采用超结构,根据计算机可用内存自动确定一次性产生超结构的大小,能够自动适应各类不同特性的数据,进行高效率的频繁模式挖掘工作.同时提出了一种能够有效地减少扫描记录数的新颖的数据库划分方法. An adaptive algorithm, AD-Mine, is put forward to mining frequent patterns. The algorithm can fit different conditions and achieve good performance. A alterable hyper-structure is used in AD-Mine. The algorithm can automatically adjust the size of the hyper-structure according to the memory available for accommodating different cases of data and mining frequent patterns effectively. A method of partitioning database is brought forward to reduce the counts of scanning records.
出处 《控制与决策》 EI CSCD 北大核心 2004年第8期867-871,880,共6页 Control and Decision
基金 江苏省自然科学基金资助项目(BK2002091) 江苏省高校自然科学研究计划项目(03KJD110089).
关键词 数据挖掘 频繁模式 划分数据库 自适应 Adaptive algorithms Database systems Performance
  • 相关文献

参考文献6

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules in large database[A]. Proc of the 20th VLDB Conf[C].Santiago,1994.487-499.
  • 2Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[A]. Proc of the 1995 ACM SIGMOD[C].San Jose,1995.175-186.
  • 3Orlando S, Palmerini P, Perego R. Enhancing the apriori algorithm for frequent set counting[A]. Proc of 3rd Int Conf on DaWaK 2001[C]. Munich: Spriger,2001.1-17.
  • 4Savasers A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in larges dadabase[A]. In 21st Int Conf on Very Large Databases (VLDB)[C].Ztrich,1995.432-443.
  • 5Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[A]. SIGMOD′00[C].Dallas,2000.1-12.
  • 6Pei J, Han J, Lu H, et al. H-Mine:Hyper-structure mining of frequent in large database[A]. Proc 2001 Int Conf on Data Mining (ICDM′01)[C].San Jose,2001.38-49.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部