期刊文献+

p^n-周期二元序列的线性复杂度与k-错线性复杂度 被引量:1

The linear complexity and the k-error linear complexity of p^n-periodic binary sequences
下载PDF
导出
摘要 密码学意义上强的序列不仅应该具有足够高的线性复杂度,而且当少量比特发生变化时不会引起线性复杂度的急剧下降,即具有足够高的k 错线性复杂度.基于xpn-1在GF(2)上的分解式非常明确和简单的事实,研究了周期为pn的二元序列线性复杂度和k 错线性复杂度之间的关系,给出了k 错线性复杂度严格小于线性复杂度的一个充分必要条件,给出了使得LC(S+E)<LC(S)成立的用错误多项式EN(x)表达的一个充分条件,给出了使得LCk(S)<LC(S)成立的最小的k值(即最小错误minerror(S))的一个上界,这里p为奇素数,z是模p2的本原根. Not only should cryptographically strong sequences have a large linear complexity, but also the change of a few terms should not cause a significant decrease in linear complexity. This requirement leads to the concept of the k-error linear complexity of periodic sequences. A relationship between the linear complexity and the k-error linear complexity of p^n-periodic sequences over GF(2) is studied, where p is an odd prime, and z is a primitive root modular p^2. A necessary and sufficient condition that the k-error linear complexity be strictly less than the linear complexity is shown. A sufficient condition expressed by the error polynomial E^N(x) that (LC(S+)(E)<)LC(S) and an upper bound of the minimum value k for which (LC_k(S)<)LC(S), i.e. minerror(S), are given.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第4期622-625,共4页 Journal of Xidian University
基金 国家自然科学基金资助项目(60073051) 国家自然科学基金重大项目(90104005)
关键词 流密码 周期序列 线性复杂度 K-错线性复杂度 stream cipher periodic sequence linear compexity k-error linear complexity
  • 相关文献

参考文献13

  • 1Ding C,Xiao G,Shan W.The Stability Theory of Stream CiphersLecture Notes in Computer Science,1991.
  • 2Stamp M;Martin C F.An Algorithm for the k-error Linear Complexity of Binary Sequences of Period 2n[J],1993(04).
  • 3Kurosawa K;Sato F;Imamura T.A Relationship Between Linear Complexity and k-error Linear Complexity[J],2000(03).
  • 4MCELIECE R J.Finite Fields for Computer Scientists and Engineers,1987.
  • 5Rosen K H.Elementary Number Theory and Its Applications,1988.
  • 6Wei S M;Xiao G Z;Chen Z.A Fast Algorithm for Determining the Minimal Polynomial of a Sequence with Period 2pn Over GF(q)[J],2002(10).
  • 7Massey J;Costello D;Justesen J.Polynomial Weights and Code Contructions[J],1973(01).
  • 8Kaida T;Uehara S;Imamura K.A Algorithm for the k-error Linear Complexity of Sequences Over GF(pm) with Period pn, p a Prime[J],1999(1/2).
  • 9魏仕民,董庆宽,肖国镇.确定周期序列k-错线性复杂度的一个快速算法[J].西安电子科技大学学报,2001,28(4):421-424. 被引量:8
  • 10Wei S M;Xiao G Z;Chen Z.An Efficient Algorithm for k-error Linear Complexity,2002(02).

二级参考文献6

  • 1Xiao Guozhen,IEEE Transactions Information Theory,2000年,46卷,6期,2203页
  • 2丁存生,流密码学及其应用,1994年
  • 3Ding Cunsheng,The Stability Theoryof Stream Ciphers,1991年
  • 4Games R A,IEEE Trans Information Theory,1983年,29卷,1期,144页
  • 5蔡勉,伊利江.广义Stamp-Martin算法[J].西安电子科技大学学报,1999,26(6):746-751. 被引量:3
  • 6蔡勉,白国强,肖国镇.序列k-错线性复杂度算法[J].通信学报,2000,21(1):64-67. 被引量:5

共引文献8

同被引文献14

  • 1王丽萍,祝跃飞.F[x]-lattice basis reduction algorithm and multisequence synthesis[J].Science in China(Series F),2001,44(5):321-328. 被引量:4
  • 2NIEDERREITER H.Linear complexity and related complexity measures for sequences[C]∥ JOHANSSON T,MAITRA S.INDOCRYPT 2003.Lecture Notes in Computer Science:Volume No2904.Berlin:Springer-Verlag,2003:1-17.
  • 3MEIDL W,NIEDERREITER H.The expected value of the joint linear complexity of periodic multise-quences[J].J Complexity,2003,19(1):61-72.
  • 4MEIDL W,WINTERHOF A.On the joint linear complexity profile of explicit inversive multisequences[J].J Complexity,2005,21(3):324-336.
  • 5XING C P,LAM K Y,WEI Z.A class of explicit perfect multi-sequences[C]∥ ASIACRYPT'99.Lecture Notes in Computer Science:Volume No1716.Berlin:Springer-Verlag,1999:299-305.
  • 6XING C P.Multi-sequences with almost perfect linear complexity profile and function fields over finite fields[J].J Complexity,2000,16(5):661-675.
  • 7DING C S,XIAO G Z,SHAN W J.The stable theory of stream ciphers[C]∥ Lecture Notes in Computer Science:Volume No561.Berlin:Springer-Verlag,1991.
  • 8ARMAND M A.Multisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings[J].IEEE Trans I T,2004,50(1):220-228.
  • 9CHEN P H.Multisequence linear shift register synthesis and its application to BCH decoding[J].IEEE Trans Communication,1976,22(4):438-440.
  • 10FENG G L,TSENG K K.A generalized euclidean algorithm for multisequence shift-register synthesis[J].IEEE Trans I T,1989,35(3):584-594.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部