期刊文献+

Edge-Tenacity in Graphs 被引量:1

图的边韧性度(英文)
下载PDF
导出
摘要 The edge-tenacity of a graph G(V,E) is denned as min{(|S|+T(G-S))/ω(G-S):S(?)E(G)},where T(G ?S) and ω(G-S), respectively, denote the order of the largest component and the number of the components of G-S. This is a better parameter to measure the stability of a network G, as it takes into account both the quantity and the order of components of the graph G-S. In a previous work, we established a necessary and sufficient condition for a graph to be edge-tenacious. These results are applied to prove that K-trees are strictly edge-tenacious. A number of results are given on the relation of edge-tenacity and other parameters, such as the higher-order edge toughness and the edge-toughness. 文[1]中,定义图G(V,E)的边韧性度定义为min{(|S|+T(G-S))/ω(G-S):S(?)E(G)},这里,T-(G-S)和ω(G-S)分别表示G-S中最大分支的顶点数和连通分支数.这是一个能衡量网络图稳定性较好的参数,因为它不仅考虑到了图G-S的分支数也考虑到了它的阶数.在以前的工作中,作者得到了边韧性度图的一个充要条件.利用这些结果证明了K-树是严格边韧性度图,并找到了边韧性度与较高阶的边坚韧度和边坚韧度之间的关系.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第3期405-410,共6页 数学研究与评论(英文版)
基金 SuppoSed by the Ministry of Communication(200332922505) the Doctoral Foundation of Ministry of Education(20030151005)
关键词 edge cut-sets strictly edge-tenacious graph K-trees higher-order edge toughness edge toughness. 边割集 严格边韧性度图 K-树 较高阶的边坚韧度 边坚韧度
  • 相关文献

参考文献10

  • 1PIAZZA B L, ROBERTS F S, STUECKLE S K. Edge-tenacious networks [J]. Networks, 1995,25: 7-17.
  • 2WANG Z P, ZHAO L C. A necessary and sufficient condition for a graph to be edge-tenacious [J]. Discrete Mathematics, 2001, 234: 191-197.
  • 3PENG Y H, CHE C C, KOH K M. On the Edge-Toughness and Spanning Tree Factorization of a Graph [M]. Research Report NO.303, Lee Kong Chian Centre for Mathematical research,National University of Singapore, 1987.
  • 4CHEN C C, KOH K M. On the higher-order edge toughness of a graph [J]. Discrete Mathematics, 1993, 111: 113-123.
  • 5BAREFOOT C A, ENTRINGER R, SWART H. Vulnerability in graphs-A comparative survey [J]. J. Combin. Math. Combin. Comput., 1987, 1: 12-22.
  • 6CHARTRAND G, LESNIAK L. Graphs and Digraphs [M]. 2nd ed Wadsworth, Monterey,CA, 1986.
  • 7BEHZAD M, CHARTRAND G, LESNIAK-FOSTER L. Graphs and Digraphs [M]. Wadsworth,Belmont, CA, 1979.
  • 8HARARY F. Graph Theory [M]. Addison-Wesley, Reading, MA, 1969.
  • 9CHAO C Y, LIN Z, XU S J. On q-trees [J]. J. Graph Theory, 1986, 10: 129-136.
  • 10PENG Y H, TAY T S. On the edge-toughness ora gaph Ⅱ [J]. Journal of Graph Theory, 1993,17: 233-246.

同被引文献23

  • 1GYULA Y K. Toughness and edge - toughness[J]. Discret Mathematics, 1997,164:187 - 196.
  • 2PENG Y H, CHEN C C, KOH K. M. On the edge-toughness and spanning tree factorization of a graph[Z]. National University of Singapore, 1987.
  • 3BAGGA K S, BEINEKE L W, LIPMAN M J, et al. On the edge- integrity of graphs[J] .Congr Numer,1987,60:141- 144.
  • 4BAGGA K S, BEINEKE L W, LIPMAN M J, et al. The integrity of the prism(Preliminary report)[Z]. Abstracts Amer. Math. Soc, 1989, 10,12.
  • 5BAGGA K S, BEINEKE L W, GODDARD W D, et al. A survey of integrity. Discrete Mathematics. 1992,37/38:13 -28.
  • 6BAGGA K S, BEINEKE L W, LIPMAN M J, et al. A good algorithym for the computation of the edge- integrity of trees[J]. Congr. Numer, 1988,67:225 - 232.
  • 7BAREFOOT C A, ENTRINGER R and SWART H. Vulnerability in graphs- A comparative survey[J]. J Combin Math Combin Comput 1987(1 ):12 - 22.
  • 8TIAN Feng, ZHANG Cun-quan. The maximum size of a critical 2 - edge - connected graph [J]. J Sys Sci & Math Sci,1982, (3) :55 - 61.
  • 9MADER W. Connectivity and edge - connectivity in finite graphs. in: B. Bollcbas, ed. , Surveys in combinatoric, Proc. 7 th British CombinatorIal Conference, Cambridge, 1979.
  • 10Andokiyoshi, USAMI Yoko. Critically ( k, k) - connected graphs[J]. Discrete Math 1987,66:15 - 22.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部