期刊文献+

欧氏空间和球面子流形中Yang-Mills场的一类不稳定性结果 被引量:1

Some Results on Instability of Yang-Mills Field of Submanifolds in Euclidean Space and Standard Sphere
下载PDF
导出
摘要 本文就欧氏空间和球面中紧致子流形的Yang-Mills场进行了讨论.得到了一类不稳定性结果. The authors discuss the stability of Yang-Mills field of compact submanifolds in Euclidean space Rn+pand sphere Sn+prespectively, and present some results on its instability.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第3期461-472,共12页 数学研究与评论(英文版)
基金 国家自然科学基金部分资助项目(19971060) 河南省自然科学基金(004051900) 河南省教委资助项目(9711006)
关键词 Yang—Mills联络 Yang—Mills场 Yang—Mills场的稳定性 Yang-Mills connection Yang-Mills field stability of Yang-Mills field.
  • 相关文献

参考文献16

  • 1BOURGUIGNON J P, LAWSON H B Jr. Stability and isolation phenomenon for Yang-Mills fields [J]. Comm. Math. Phys. , 1981, 79: 189-230.
  • 2BOURGUIGNON J P, LAWSON H B Jr, SIMONS J. Stability and gap phenomenon of Yang-Mills field [J]. Proc. Natl. Acad. Sci. USA. , 1979, 76: 1550-1553.
  • 3LAQUER H T. Stability properties of the Yang-Mills functional near the canonical connection [J].Michigan Math. J. , 1984, 31: 139-159.
  • 4KOBAYASHI S, OHNITA Y S, TAKEUCHI M. On instability of Yang-Mills Connections [J]. Math.Z., 1986, 193: 165-189.
  • 5KOBAYASHI S, NOMIZU K. Foundations of Differential Geometry [M], Vol. I, Interscience Publishers, New York, London, 75-79.
  • 6SIMONS J. Minimal varieties in riemannian manifolds [J]. J. Math. Soc. Japan, 1966, 18: 380-385.
  • 7XIN Y L. Some results on stable harmonic maps [J]. Duke Math. J. , 1980, 47: 609-613.
  • 8XIN Y L. Topology of certain submanifold in the Euclidean sphere [J]. Proc. Math. Soc., 1981, 84(4): 643-648.
  • 9LEUNG P F. On the Stability of Harmonic Maps [M]. Lecture Notes math. , Springer Verlag, 1982,194: 122-129.
  • 10LEUNG P F. A note on stable harmonic maps [J]. J. London Math. Soc. , 1984, 29:380-384

二级参考文献7

  • 1吴传喜,1988年
  • 2Pan Y L,Proc Amer Math Soc,1985年,93卷,111页
  • 3Chen B Y,Total mean curvature and submanifolds of finite group,1984年
  • 4Pan Y L,Chin Ann Math B,1982年,3卷,515页
  • 5Xin Y L,Proc Amer Math Soc,1981年,82卷,643页
  • 6Xin Y L,Duke Math J,1980年,47卷,609页
  • 7Tai S S,J Diff Geom,1968年,2卷,55页

共引文献1

同被引文献6

  • 1莫小欢.常曲率空间中具有平行平均曲率向量的子流形[J].数学年刊:A辑,1988,9(5):530-540.
  • 2COLLINS G P. Computing with quantum knots[ J], Scientific American, 2006, 294 (4) : 56 - 63.
  • 3BOURGUIGONON J P, LAWSON H B. Stability and isolation phemomena for Yang-Mills fields [ J ]. Commun Math Phys, 1981,79 : 189 - 230.
  • 4KOBAYASHI S, OHINTA Y ,TAKUECHI M. On instability of Yang-Mills connections[J]. Math Z, 1986, 193:165 -189.
  • 5SHEN C L. Weakly stability of Yang-Mills fields over the submanifolds of the sphere[ J]. Arch Math, 1982, 39:78 - 84.
  • 6LIP. On the sobolev constant and the p-spectrum of a compact Riemannian manifold [ J ]. Ann Sci Norm Sup, 1980, 13:451-467.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部