期刊文献+

基于冗余关节机器人的插接管道焊缝扫查系统设计 被引量:3

Design of weld inspection system for intersected pipe based on redundant manipulator
下载PDF
导出
摘要 针对相贯线焊缝难以检测的问题,提出了一种新型的管道插接相贯线焊缝扫查机器人系统,通过管道夹紧装置使得机器人可附着于支管上作360°圆周运动,特别是通过冗余关节的设计实现了机器人末端探测器要求的空间相贯线扫查轨迹。该系统可实现两种管道扫查方式:一种是沿不同的扫查半径做360°周向扫查;另一种方式是沿径向呈"Z"字形进行扫查。可实现支管直径为100~400mm,被扫管道直径为600~1000mm范围内的相贯线焊缝扫查。系统设计分析和控制运行结果表明:扫查的周向步进精度≤0.2mm/m,径向步进精度≤0.5mm/m,轴向步进精度≤1mm/mm。 A robotic system was designed for the pipe intersected weld inspection. The manipulator can be hung on a branch pipe and rotates 360° according to a split pipe clamp device. The required inspection trajectory of the inspection probe on the manipulator's end-detector is finalized by using the redundancy joints. The robotic system has two inspection modes. One is the 360° circumferential inspection with different scanning radii. The other is the 'Z' shape inspection along the radial direction. The robotic system can perform intersected weld inspection when the radius range of the branch pipe and the inspected pipe are 100~400 mm and 600~1 000 mm,respectively. The results of the analysis of the designed system architecture and the operation under control algorithm show that the inspection accuracy of the robotic system can be: circumferential stepping accuracy≤0.2 mm/m, radial stepping accuracy≤0.5 mm/m, and axial stepping accuracy≤1 mm/mm.
作者 鄢波 颜国正
出处 《光学精密工程》 EI CAS CSCD 2004年第4期420-425,共6页 Optics and Precision Engineering
基金 国防科工委"十五计划"基础计划项目(T012001A001)
关键词 相贯线焊缝 焊缝检测 机器人系统 intersection weld weld inspection robotic system
  • 相关文献

参考文献15

  • 1GRUDIC G Z.Iterative inverse kinematics with manipulator configuration control[J]. IEEE Transctions on Robotics and Automation, 1993, 9(4): 476-483.
  • 2SCHINSTOCK D E, CUTTINO J F. Real time kinematic solutions of a non-contacting, three dimensional metrology frame[J]. Precision Engineering, 2000, 24(1):70-76.
  • 3AHUACTZIN J M,GUPITA K. A motion planning based approach for inverse kinematics of redundant robots: the kinematic roadmap[J]. Expert Systems with Applications, 1998, 14(2): 159-167.
  • 4ROBERT M. A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track[J]. Control Engineering Practice, 2002,10(1):35-43.
  • 5CHAPELLE F,BIAUDP B. Closed form solutions for inverse kinematics approximation of general 6R manipulators[J]. Mechanism and Machine Theory, 2004,39(3):323-338.
  • 6SEN D. MRUTHYUNJAYA T S. A computational geometry approach for determination of boundary of workspaces of planar manipulators with arbitrary topology[J]. Mechanism and Machine Theory, 1999,34(1): 149-169.
  • 7CARON M, MODI V J, MISRA A K. Dynamics of a multimodule variable geometry manipulator[J]. Acta Astronautica, 2002,50(10): 587-595.
  • 8LUH J Y S,LIN C S, Approximate joint trajectories for control of industrial robots along cartesian paths[J]. IEEE Trans. Systems,Man,Cybern, 1984, SMC-14(3): 1094-1102.
  • 9TAYLOR R H. Planning and execution of straight line manipulator trajectories[J]. IBM Journal of Research and Development, 1979,23(4): 424-436.
  • 10CHANG Y H,LEE T T,LIU C H. On-Line approximate cartesian path trajectory planning for robotic manipulator[J]. IEEE Trans. Systems,Man,Cybern, 1992,22(3):542-547.

二级参考文献10

共引文献17

同被引文献27

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部