期刊文献+

关于非扩展映象的弱收敛定理 被引量:1

Weak Convergence Theorems for Nonexpansive Mappings
下载PDF
导出
摘要 首先讨论一个由非扩展映象的有限族所定义的迭代格式,主要证明了:设E为满足Opial条件的一致凸的Banach空间,C是E的非空间凸子集,Fi:C→C(i=1,2,…,r)为有限非扩展映象,且∩ri=1F(Ti)非空,设x1∈C,迭代地定义序列{xn}如下:xn+1=Wnxn, n≥1.其中Wn(n=1,2,…)为由T1,T2,…,Tr生成的W_映象.则{xn}弱收敛于T1,T2,…,Tr的共同不动点. Introduce an iteration scheme given by finite nonexpansive mappings, we prove the main resulf as follows: Let E be a uniformly convex Banach with Opial's condition, C be a nonempty convex sabsct of E,( T_i:C→C(i=1,2,)...,r)be finite nonexpansive mappings, ∩~r_(i=1)F(T_i)≠. let x_1∈C, iterative scheme {x_n} definited as follow:x_(n+1)=W_nx_n,_n≥1.where W_n(n=1,2,...)are W-mappings gcnerated by T_1,T_2,...,T_r, them{x_n}converges weedly to the common fixed point of T_1,T_2,...,T_r.
出处 《河北大学学报(自然科学版)》 CAS 2004年第4期337-340,356,共5页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(96302017) 军械工程学院科学研究基金资助项目(2003yjj12)
关键词 非扩展映象 不动点 OPIAL条件 象覆盖 nonexpansive mapping fixed points Opial's condition image recovery.
  • 相关文献

参考文献7

  • 1GROMBEZ G. Image recovery by convex combinations of projections [J]. J Math Anal Appl, 1991,155:413 -419.
  • 2KITAHARS S, TAKAHASHI W. Image recovery by convex combinations for sunny nonexpansive retractions [J]. Topol Methods Nonlinear Anal, 1993(2): 333 - 342.
  • 3TAKAHASHI W, TAMURA T. Limit theorems of operators by convex combinations for nonexp-ansive retractions in Banach spaces [J]. J Approximation Theiry, 1997, 91:386 - 397.
  • 4KIRK W A. A fixed point theorem for mappings which do not increase distances [J]. Amer Math Monthly, 1965, 72:1004 - 1006.
  • 5OPIAL Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings [J ]. Bull Amer Math Soc,1967, 73:591 - 597.
  • 6REISH S. Weak convergence theorems for nonexpansive mappings in Banach spaces [J]. J Math Anal Appl, 1979, 67:274 - 276.
  • 7SCHU J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings[J]. Bull Austral Math Soc,1991, 43:153- 159.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部