摘要
采用AM1方法研究了10种新型的磺酰脲类除草剂的电子结构,并以原子的Mulliken净电荷和除草剂在不同浓度(100,10mg/L)下对油菜、稗草两种作物的根、茎部位的抑制率为训练样本集,构造并训练得到具有活性预测能力的BP神经网络.结果表明,该BP网络不仅能对训练样本很好拟合,亦能对未知化合物的活性作出很好的预测.
The geometry of 10 herbicides was optimized by using AM1 method. An BP neural network (30-15-4) was developed to predict the activity of herbicide. The Mulliken net charges of 29 atoms and the concentration (100,10 mg/L) of herbicides were selected as the 30 input values of network, and the activity of herbicides as the 4 output values of network. Simulation and prediction results indicate that the choice of the characters is reasonable, and the method based on BP is effective.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2004年第4期411-414,共4页
Journal of Wuhan University:Natural Science Edition
关键词
除草剂
结构-活性关系
预测
BP神经网络
herbicide
structure-activity relationship
prediction
BP neural network