期刊文献+

基于小波逼近的机械系统非完整运动规划数值方法 被引量:1

WAVELET APPROXIMATION BASEDNUMERICAL ALGORITHM FORNONHOLONOMIC MOTION PLANNINGOF MECHANICAL SYSTEM
下载PDF
导出
摘要 机械系统中的非完整约束通常是由不可积的速度约束或不可积的守恒律引起。由于非完整约束的存在,系统的运动控制和规划问题比一般的机械系统要困难得多。机械系统在动量和动量矩守恒且为零的情况下,系统动力学方程可降阶为非完整形式约束方程。基于这样的方程,将系统的控制问题转化为无漂移系统的非完整运动规划问题。针对带有非完整约束的机械系统,导出自由漂浮的空间机器人系统非完整运动模型。利用最优控制技术和小波分析方法,在控制输入中引入小波函数逼近,提出一种非完整机械系统运动规划数值方法。将该方法用于自由漂浮空间双臂机器人系统,仿真结果验证了方法的有效性。 Nonholonomicity arises in many mechanical systems subject to nonintegrable velocity constraints or nonintegrable conservation laws. Due to nonholonomic constraints, the mo-tion planning and control of a nonholonomic mechanical system is much more difficult than that of a conventional system. When the total angular momentum is zero, the dynamics of a me-chanical system is described in the form of differential equa-tions of first order. According to such equations, the control problem of system can be converted to the motion planning problem for a driftless control system. The equation of dynam-ics of space robot with free floating is obtained by using the momentum theorem. The control technique and wavelet analy-sis method are made use of and an numerical algorithm for nonholonomic motion planning is proposed. The wavelet ap-proximation is used to optimal control and to generate a feasible trajectory for a nonholonomic system. The effectiveness of the numerical algorithm is demonstrated by numerical simulation.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2004年第7期41-46,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(No.10372014 10272008)
关键词 机械系统 非完整约束 运动规划 优化控制 小波应用 Mechanical system Nonholonomic constraint Motion planning Optimal control Wavelet
  • 相关文献

参考文献18

  • 1Kolmanovsky I, McClamroch N H. Developments in nonholonomic control problems. IEEE Control System Magazine, 1995, 15:20~36
  • 2Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florida:CRC Press, 1994
  • 3Brockett R W. Control theory and singular Riemannian geometry. In:Hinton P, Young G, eds. New Directions in Applied Mathematics. New York:Springer-Verlag, 1981:11~27
  • 4Murray R M, Sastry S S. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Control, 1993, 38(5):700~716
  • 5Lafferriere G, Sussmann H J. A differential geometric approach to motion planning. In:Li Z, Canny J F, eds. Nonholonomic Motion Planning. Kluwer, 1993:235~270
  • 6Reyhanoglu M. A general nonholonomic motion planning strategy for Caplygin systems. In:Proceedings of the 33rd IEEE Conference on Decision and Control, 1994:2 964~ 2 966
  • 7Gurvits L, Li Z. Smooth time-periodic feedback soiutions for nonholonomic motion planning, In:Li Z, Canny J F, eds. Nonholonomic Motion Planning. Kluwer, 1993:53~ 108
  • 8Leonard N E, Krishnaprasad P S. Averaging for attitude control and motion planning. In:Proceedings of the 32nd IEEE Conference on Decision and Control, 1993:3 098~ 3 104
  • 9Laumond J P, Jacbs P E, Taix M, et al. A motion planner for nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 1994, 10(5):577~593
  • 10Mukherjee R, Anderson D P. A surface integral approach to the motion planning of nonholonomic systems. ASME Journal of Dynamic Systems, Measurement, and Control, 1994, 116(9):315~325

二级参考文献19

  • 1胡跃明,用其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10. 被引量:26
  • 2管贻生.多指手操作:理论、算法和实验[博士学位论文].北京:北京航空航天大学,1998..
  • 3刘延柱.航天器姿态动力学[M].北京:国防工业出版社,1995.182-211.
  • 4梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 5赵松年 熊小芸.小波变换与小波分析[M].北京:电子工业出版社,1997..
  • 6赵松年,小波变换与小波分析,1997年
  • 7刘延柱,航天器姿态动力学,1995年
  • 8Fernandes C,Int J Robotics Res,1994年,13卷,4期,289页
  • 9Fernandes C,IEEE Proc Int Conf Robot Automation,1991年,680页
  • 10Popa D,IFAC 13th Triennial World Congress San Francisco,1996年

共引文献7

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部