期刊文献+

一维粘弹材料周期结构的振动带隙研究 被引量:18

RESEARCH ON THE VIBRATION BANDGAPS OF ONE DIMENSIONAL VISCOELASTIC PERIODIC STRUCTURE
下载PDF
导出
摘要 采用迭代法改进了一维声子晶体带隙特性计算的平面波展开(PWE)算法,以使其适用于组成材料粘弹性所导致的弹性常数随频率非线性变化的特性。将该算法应用于丁腈橡胶(NBR)和钢组成的两种结构尺寸的一维周期结构声子晶体振动带隙的研究中,理论计算和振动测试结果吻合理想。进一步的理论分析表明,橡胶材料的储能弹性模量随频率的单调增加,使得在保持禁带开始频率不变的同时大大加宽了禁带范围,在3 mm钢/10 mm NBR以及7 mm钢/10 mm NBR两种周期结构一维声子晶体中禁带宽度分别增加了36.4%和34.0%。 The one dimensional plane wave expansion (PWE) algorithm is improved using iterative method in order to solve the problem of nonlinear changing of elastic constants with frequency, which is found in calculating of the band gaps of one dimensional viscoelastic phononic crystals. The new method is applied in the research of the vibration band gap of one dimensional steel/butadiene acrylnitrile rubber (NBR) periodic structure. The calculation results are in good agreement with the experimental results. Further theoretical analyses shows that the nonlinear changing of elastic constants with frequency of viscoelastic rubber can remarkably increase the width of first band gap, and at the same time hold the starting frequency of it. For the two cases, the width of first band gap increased by 36.4% (for the 3 mm steel/10 mm NBR periodic structure) and 34.0% (for the 7 mm steel/10 mm NBR periodic structure) respectively.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2004年第7期47-50,80,共5页 Journal of Mechanical Engineering
基金 国家973重大基础研究资助项目(51307)。
关键词 声子晶体 振动带隙 粘弹性 平面波展开 Phononic crystals Vibration band gap Viscoelasticity Plane wave expansion
  • 相关文献

参考文献12

  • 1Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physics Review Letters, 1987, 58:2 059~2 062
  • 2John S. Strong location of photons in certain disordered dielectric superlattices. Physics Review Letters, 1987, 58: 2 486~2 489
  • 3Kushwaha M S. Classical band structure of periodic elastic composites. Int. J. Mod. Phys. B, 1996, 10(9):977~1 094
  • 4Kushwaha M S, Halevi P, Dobrzysnki L, et al. Acoustic band-structure of periodic elastic composites. Physics Review Letters, 1993, 71(13):2 022~2 025
  • 5Wu F G, Liu Z Y, Liu Y Y. Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. Journal of Physics D:Applied Physics, 2002, 35:162~165
  • 6Vasseur J O, Deymier P A, Chenni B. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Physics Review Letters, 2001, 86:3 012~3 015
  • 7Kafesaki M, Penciu R S, Economou E N. Air bubbles in water:A strongly multiple scattering medium for acoustic waves. Physics Review Letters, 2000, 84:6 050~6 053
  • 8García-Pablos D, Sigalas M, Montero de Espinosa F R, et al. Theory and experiments on elastic band gaps. Physics Review Letters, 2000, 84:4 349~4 352
  • 9Liu Z Y, Zhang X X, Mao Y W, et al. Locally resonant sonic materials. Science, 2000, 289(8):1 734-1 736
  • 10丁文镜. 减振理论. 北京:清华大学出版社, 1988

同被引文献177

引证文献18

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部