期刊文献+

不同层显式格式及在微尺度热传导中的应用 被引量:1

The Various Layer Explicit Schemes and Their Applications for Heat Transport Equations at the Microscale
下载PDF
导出
摘要  基于指数拟合和牛顿插值多项式构造了用于数值计算偏微分方程的不同层显式格式,应用不同层显式格式可获得不同精度的数值计算结果,并将该算法应用于微结构热传导方程和薄膜强瞬态热传导方程中. The various order explicit schemes based on exponential fitting and Newton interpolants are constructed for partial differential equations.The various precision can be achieved by employing the various order explicit schemes.When the schemes are applied to heat transport equations at the microscale and strong transient heat transport in thin film,the effects are admirable.Numerical calculations show the present method is high accurate and computationally efficient.
出处 《计算物理》 CSCD 北大核心 2004年第4期335-340,共6页 Chinese Journal of Computational Physics
基金 国家自然科学基金(编号:19902002) 上海交通大学振动 冲击 噪声国家重点实验室开放基金(编号:VSN 2003 03) 天津大学"985教育振兴计划"基金资助项目
关键词 多层显式格式 指数拟合 微尺度热传导方程 薄膜强瞬态热传导方程 牛顿插值多项式 The various order explicit schemes exponential fitting heat transport equations at the microscale strong transient heat transport in thin film
  • 相关文献

参考文献6

  • 1McCartin B J. Exponential fitting of the delayed recruitment/renewal equation [J]. Journal of Computational and Applied Mathematics,2001, 136:343 - 356.
  • 2Vanden Berghe G, Ixaru L Gr, De Meyer H. Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods [J]. Journal of Computational and Applied Mathematics, 2001, 132: 95- 105.
  • 3Jiang Lishang, Yue Xingye. Local Exponentially fitted finite element schemes for singularly perturbed convection-diffusion problems[J]. Jounral of Computational and Applied Mathematic, 2001, 132:277 -293.
  • 4Dai W, Nassar R. A finite difference method for solving the heat transport equationa at the microscale [J]. Numer Methods Partial Differential Equations, 1999, 15: 698 - 708.
  • 5Joseph D D. Heat waves [J]. Rev Modem Phys, 1989, 61:41 -73.
  • 6Joshi A A, Majumdar A. Transient ballistic and diffusive photo heat transport in thin films [J]. J Appl Phy, 1993, 74:31 - 39.

同被引文献7

  • 1Ozis T,Aksan E N,Ozdes A.A finite element approach for solution of Burgers' equation.Applied Mathematics and Computation,2003 (139):417-428.
  • 2Feng K,Symplectic algorithms for Hamiltonian systems,Collected works of Feng Kang(Ⅱ).
  • 3Iserlse A,Munthe-Kaas H Z,Nφrsett S P,Zanna A.Lie-group methods.Acta Numerica,2000:215-365.
  • 4Bieterman M,Babuska I.The finite element method for parabolic equations,(Ⅰ) a posteriori estimation,Numer.Math.,1982 (40):339-371.
  • 5Hong J,Lin Y.A novel numerical approach to simulate nonlinear Schr(o)dinger equation with varing coefficients.Applied Mathematical Letter,2003 (16):759-765.
  • 6Sun Jianqiang,Ma Zhongqi,Qin Mengzhao,RKMK method of solving non-damping LL equations and ferromagnet chain equations.Applied Mathematics and Computation,2004(157):407-424.
  • 7Zanna A,Munthe-Kaas H Z.Generalized Polar Decompositions for the Approximation of the Matrix Exponential.SIAM J Matrix.Anal.Appl.,2002,23(3):840-862.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部