期刊文献+

Moser扭转定理在Lagrange稳定性中的应用(英文) 被引量:1

Lagrange Stability Via the Twist Theorem
下载PDF
导出
摘要 本文利用Moser扭转定理证明了一类Duffing方程x’’+g(x)=e(t)的Lagrange稳定性,其中e(t)以1为周期,g:R→R具有下列性质:当x≥do时,g(x)是超线性的;当x≤-do时,g(x)是次线性的,其中do是一正常数. We prove the Lagrange stability of solutions for a class of Duffing equations x + g(x) = e(t), where e(t) is of period 1, and g : IR → IR possesses the characters: g(x) is superlinear when x ≥ d0, d0 is a positive constant and g(x) is sublinear when x ≤-d0.
作者 弭鲁芳
机构地区 复旦大学数学系
出处 《数学进展》 CSCD 北大核心 2004年第4期477-488,共12页 Advances in Mathematics(China)
基金 Supported by NSFC(No.60074005)
关键词 Moser扭转定理 LAGRANGE稳定性 DUFFING方程 拟周期运动 超线性 quasiperiodic motion Duffing equation Moser's small twist theorem Lagrange stability
  • 相关文献

参考文献1

共引文献6

同被引文献17

  • 1[1]LITTLEWOOD J.Some Problem in Real and Complex Analysis[M].Heath,Lexington,MA,1968.
  • 2[2]MORRIS G.A case of boundedness of Littlewood's prblem on oscillatory differential equations[J].Bull.Austral.Math.Soc.,1976,14:71~93.
  • 3[3]ALEKSEEV V M.Quasirandom dynamical systems[J].Math.USSR-Sb.,1968,5:73~128; 1968,6:505~560; 1969,7:1~43.
  • 4[4]SITNIKOV K.Existence of oscillating motions for three-body problem[J].Dokl.Akad.Nauk.,SSSR.,1960,133(2):303~306.
  • 5[5]MOSER J.Stable and random motions in dynamical systems[J].Ann.Of Math.Studies,Princeton,N.J.,1973,77:54~56.
  • 6[6]DIECKERHOFF R,ZEHNDER E.Boundedness of solutions via the twist theorem[J].Ann.Scula.Norm Sup.Pias Cl.Sci.,1987,14 (1):79~95.
  • 7[7]LAEDERICH S,LEVI M.Invariant curves and time-dependent potentials[J].Ergod.Th.&Dynam Sys.,1991,11:365~378.
  • 8[8]LEVI M.Quasi-periodic motions in superquadratic time-periodic potentials[J].Comm.Math.Phys.,1991,143(1):43~83.
  • 9[9]LIU B.Boundedness for solutions of nonlinear Hill's equations with periodic forcing terms via Msser's twist theorem[J].J.Differential Equations.1989,79:43~83.
  • 10[10]YOU J.Boundedness for soulutions of superlinear Duffing's equations via twist curves theorems[J].Scientia Sinica,1992,35:399~412.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部