期刊文献+

马氏链遍历性的几个结果 被引量:2

SOME ERGODIC RESULTS FOR MARKOV CHAINS
下载PDF
导出
摘要 证明有界的有限死马氏链和次线性的扩展分支过程非强遍历 。 It is proved that the finite death process with bounded Q-matrix and sub-linear extended branching process can not be strongly ergodic. A continuous time Markov chain with bounded Q-matrix and its embedded chain belong to the same ergodic class.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期437-440,共4页 Journal of Beijing Normal University(Natural Science)
基金 教育部博士点专项研究基金资助项目 (2 0 0 10 0 2 70 0 7) 国家"九七三"资助项目 国家自然科学基金资助项目(10 12 110 1 10 30 10 0 7) 国家杰出青年基金资助项目 (10 0 2 5 10 5 )
关键词 马氏链 嵌入链 分支过程 遍历性 Markov chain embedded chain ergodicity
  • 相关文献

参考文献9

  • 1[1]Chen Mufa.Ergodic convergence rates of Markov processes[M].北京:高等教育出版社,2002
  • 2[2]Mao Yonghua. Strong ergodicity for Markov processes by coupling method[J]. J Appl Prob, 2002,39: 839
  • 3[3]Zhang Yuhui. Strong erdogicity for single-birth processes[J]. J Appl Prob, 2001, 38: 270
  • 4[4]Chen R R. An extended class of time-contimuous branching processes[J]. J Appl Prob, 1997, 34:14
  • 5[5]Chen Mufa. From Markov chains to non-equilibrium particle systems[M]. Singapore: World Scientific,1992
  • 6CHEN MUFA(Department of Mathematics,Beijing Normal University,Beijing 100875,China).SINGLE BIRTH PROCESSES[J].Chinese Annals of Mathematics,Series B,1999,20(1):77-82. 被引量:15
  • 7毛永华.离散时间随机游动的遍历性[J].北京师范大学学报(自然科学版),2002,38(6):729-733. 被引量:1
  • 8毛永华.离散时间遍历的Markov链的代数式收敛[J].中国科学(A辑),2003,33(2):152-160. 被引量:3
  • 9毛永华.连续时间Markov链的遍历度[J].中国科学(A辑),2003,33(5):409-420. 被引量:1

二级参考文献30

  • 1[1]Karlin S, Taylor H M. A first course in stochastic processes. 2nd ed[M]. Boston: Academic Press, 1975
  • 2[2]Chen Mufa. From Markov chains to non-equilibrium particle systems[M]. Singapore: World Scientific, 1992
  • 3[3]van Doorn E A, Schrijner P. Geometric ergodicity and quasi-stationarity in discrtet-time birth-death processes[J]. J Austral Math Soc: Ser B, 1995,37:1
  • 4[4]Chen Mufa. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains[J]. Stoch Proc Appl, 2000,87:281
  • 5[5]Reed M, Simon B. Methods of modern mathematical physics: vol Ⅱ[M]. New York: Academic Press, 1972
  • 6[6]Karlin S, Mcgregor J L. Random walks[J]. Illinois J Math, 1959,3:66
  • 7[7]van Doorn E A, Schrijner P. Random walk polynomials and random walk measures[J]. J Comput Appl Probab, 1992,49:289
  • 8[8]Yosida K. Functional analysis[M]. Berlin: Springer-Verlag,1980
  • 9[9]Chen Mufa. Explicit bounds of the first eigenvalue[J]. Science in China: Ser A, 2000,43:1051
  • 10[1]Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992

共引文献16

同被引文献13

  • 1杨卫国,李芳,王小胜.一类非齐次马氏链的收敛速度[J].江苏大学学报(自然科学版),2005,26(2):137-139. 被引量:5
  • 2陈永义,傅自晦,张学显.非齐次马尔科夫链遍历性的一些结果[J].系统科学与数学,1996,16(4):311-317. 被引量:6
  • 3李芳,杨卫国.一类非齐次马氏链的绝对平均强遍历性[J].数学的实践与认识,2007,37(10):136-138. 被引量:5
  • 4Isaacson.D, Madsen.R. Markov Chains Theory and Applications[M]. Wiley, New York, 1976.
  • 5Huang C, Isaacson D, Vinograde B. The rate of convergence of certain nonstationary Markov chains[J]. Z. Wahrscheinlichkeitstheories and Verw Gebiete, 1976(35): 141-146.
  • 6Bowerman B, David H T, Isaacson D. The Convergence of Cesaro averages for certain nonstationary Markov chains[J]. Stochastic Process and their Applications, 1977(5): 221-230.
  • 7Tan C P. On the weak ergodicity of nonhomogeneous Markov chains[J]. Statisitics & Probability Letters, 1996(26): 293-295.
  • 8Yang W G. Strong law of large numbers for countable nonhomogeneous Markov chains[J]. Linear Algebra and its Applications, 2009(430): 3009-3018.
  • 9Zhong P P, Yang W G, Liang P P. The asymptotic equipartition property for asymptotic circular Markov chains[J1. Probability in the Engineering and Informational Sciences, 2010(24): 279-288.
  • 10Ma H L, Yang W G. Erratum to "The asymptotic Equipartition property for asymptotic circular Markov chains" [Probability in the Engineering and Informational Sciences, 2010(24): 279-288], Probability in the Engineering and Informational Sciences, 2011(25): 265-267.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部