期刊文献+

基于多类神经网络机的自然图像分类 被引量:1

On Applying Multi-Class Neural Network to Classifying Scene Image
下载PDF
导出
摘要 基于底层视觉特征把图像分为具有特定意义的类别,对于基于内容的图像检索意义重大。因为在这种分类基础上,可以在图像库中建立一种有效的索引机制。在底层视觉特征方面,文中主要提取了图像的主颜色特征和GABOR纹理特征,然后,提出了一种多类神经网络机用于图像的分类。在一个含有4000幅的图像库中,实验结果证明这种方法可以达到70%以上的准确率。 Refs.2 and 3 provide two-class classifiers to classify scene images. We propose using multi-class neural network to do a better job of classifying scene images. Proper classification is helpful to retrieving satisfactorily content-based scene image. Our method requires extracting two low-level features: dominant color feature and Gabor texture feature. We extract only the dominant color because we want to save memory space and computation time. In the multi-class RBF (Radial Basis Function) neural network we designed and implemented for experimental research, we paid particular attention to the fusion of the two low-level features: dominant color and Gabor texture. We performed fairly extensive but limited experiments with our method and experimental setup. For 8-class scene images, we attain an accuracy of more than 70% correct classification, higher than the 40%~50% correct classification attainable with Bayes classifiers.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第4期431-434,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金 (60 1 750 0 1 )资助
关键词 多类神经网络机 自然图像分类 主颜色特征 multi-class neural network, scene image classification, dominant color
  • 相关文献

参考文献5

  • 1[1]Smith J R, Chang S F. Visualseek: A Fully Automated Content-Based Image Query System. In Proceedings of ACM Multimedia, 1996, 6, 87~98
  • 2[2]Vailaya A, Jain A K, Zhang H J. On Image Classification: City Images and Landscapes. Pattern Recognition, 1998, 31(12): 1921~1936
  • 3[3]Szummer M, Picard R. Indoor-Outdoor Image Classification. IEEE International Workshop on Content-Based Access of Image and Video Databases CAIVD′98, Bombay, India: 1998, 42~51
  • 4[4]Manjunath B S, Ma W Y. Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8), 837~842
  • 5[5]Kohonen T. Improved Versions of Learning Vector Quantization. Proceedings of International Joint Conference on Neural Networks, 1990, 545~550

同被引文献8

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部