期刊文献+

质子交换膜燃料电池电堆动态热传输模型 被引量:8

Heat Transport Dynamic Model of Proton Exchange Membrane Fuel Cell Stack
下载PDF
导出
摘要 基于能量守恒原理建立了电堆的动态热传输模型,比较全面地考虑了影响电堆热传输的因素.仿真结果表明,在不考虑冷却且反应气体输入流量略大于负载电流所需流量情况下,随负载电流的增大电堆温度快速上升;当电堆电流为常数时,随着提高输入气体的流量,电堆温度由不稳定状态逐渐过渡到稳定状态,且稳定值随之下降;另外,当加入冷却系统后,可以充分保证电堆在较理想的温度下运行.模型仿真结果与实验数据能够较好吻合. A heat transport dynamic model of proton exchange membrane fuel cell (PEMFC) stack and the factors affecting stack temperature were considered. Neglecting cooling effect, the stack temperature increases quickly with the stack current, if the feeding gas rate of reactant is a little higher than one needed for the load. If the stack current is constant, with the increase of the feeding rate of reactants, the results also show that the stack temperature may transit to a stable region from an unstable one. Moreover, the simulation shows that it is desired to use a cooling system to keep the stack working steadily. The experimental data agree well with the simulation results.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第8期1300-1303,共4页 Journal of Shanghai Jiaotong University
关键词 质子交换膜燃料电池 电堆 热传输 动态模型 Cooling water Heat transfer Temperature distribution
  • 相关文献

参考文献7

  • 1Bering T, Lu D M, Djilali N D. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell[J]. J Power Sources,2002,106:284-294.
  • 2Andrew R, Li X G. Mathematical modeling of proton exchange membrane fuel cells[J]. J Power Sources,2001,102:82-96.
  • 3Lee J H, Lalk T R. Modeling fuel cell stack system[J]. J Power Sources,1998,73:229-241.
  • 4Amphlett J C, Mann R F, Peppley B A, et al. A model prediction transient responses of proton exchange membrane fuel cell[J]. J Power Sources,1996,61:183-188.
  • 5Ceraolo M, Miuli C, Pozio A. Modelling static and dynamic behaviour of pemfc on the basis of electro-chemical description[J]. J Power Sources,2003,113:131-144.
  • 6孙兴进,朱新坚.熔盐燃料电池电堆动态特性的建模和分析[J].上海交通大学学报,2002,36(7):1016-1020. 被引量:1
  • 7刘耘,朱新坚,曹广益.顺流型、对流型熔融碳酸盐燃料电池电堆温度分布模型求解与比较[J].上海交通大学学报,2000,34(12):1649-1652. 被引量:2

二级参考文献8

  • 1曹广益,孙文辉.溶融碳酸盐型燃料电池温度特性的建模与求解[J].上海交通大学学报,1993,27(2):139-146. 被引量:9
  • 2[1]Hirata H,Nakagaki T,Michio H. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack[J]. Journal of Power Sources,1999,83(2):41-49.
  • 3[2]Koh J. Effect of various stack parameters on temperature rise in MCFC stack[J]. Journal of Power Sources,2000,91(1-2):161-171.
  • 4[3]Haruhiko H, Michio H. Gas-flow uniformity and cell performance in a molten carbonate fuel cell stack[J].Journal of Power Sources,1996,63(1):115-120.
  • 5[4]Ding J, Patel P. A computer model for direct carbonate fuel cess [A]. Koda E. Proc 4th Int Symp on Carbonate Fuel Cell Technology[C]. Andover: Phisical Sciences,1997.127-138.
  • 6[5]Izaki Y, Mugikura Y. Dovelopment and operating evaluation of the parallel flow and internal manifold type stack[M]. Yokosuka: Yokosuka Research Lboratory,1998.10-165.
  • 7[6]Yoshiba F, Abe T, Cao Guangyi, et al. Investigation on internal condition of MCFC stack (numerical analysis of co-flow type stack) [J]. JSME,1997,63(606B):675-682.
  • 8[4]Yoshiba F, Izaki Y, Watanabe T, et al. Analyses of MCFC stack performance using three dimensional numerical models -- comparison of stack performances about various gas flow type and analyses of heat loss effects on a stack performance [R]. Japan: CRIEPI Report,1997. 1~21.

共引文献1

同被引文献67

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部