摘要
记N=pq为n比特RSA模数,e和d分别为加解密指数,v为p和q低位相同的比特数,即p≡qmod2v且p qmod2v+1.考察了基于格基约化理论的对RSA的部分密钥泄露攻击.证明了当v和ed均较小且解密指数d的低n/4比特已知时,存在关于n和2v的多项式时间算法分解N.
Let N=pq be an n-bit RSA modulus,e(or d) be encryption (or decryption) exponent and v denote the exact number of the least significant bits that p and q equal,i.e.,p≡q mod 2~v and pq mod 2^(v+1).Based on lattice reduction theory the partial key exposure attack on RSA is considered in this paper.It is proved that known the n/4 least significant bits of d,one can factor N in time polynomial in n and 2~v when v and the product of e and d are small.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2004年第3期347-352,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家973项目(G1999035804)
国家自然科学基金(90204015)
河南省杰出青年基金
关键词
部分密钥泄露攻击
LLL-算法
加密指数
解密指数
partial key exposure attack
LLL-algorithm
encryption exponent
decryption exponent