期刊文献+

基于AOS非线性扩散的SAR图像去噪研究 被引量:2

A study of SAR images denoising based on AOS nonlinear diffusion
下载PDF
导出
摘要 针对合成孔径雷达 (SAR)图像的斑点噪声 ,介绍了一种基于非线性各向异性扩散的去噪方法 ,该方法经过加性算子分离 (AOS)方案离散可以保证其扩散迭代过程中滤波结果的绝对稳定 ,并且利用其在消除噪声的同时锐化边界的特点 ,将之引入SAR图像的斑点噪声抑制问题当中。通过对一幅SAR图像的滤波处理 ,以及若干衡量滤波算法效果的评价指标 ,将其与传统的自适应局域统计滤波方法进行分析比较 ,并得出相关结论 ,从而证实了该研究提出的AOS非线性扩散滤波法 (AOSND法 ) Based on nonlinear anisotropic diffusion, a new denoising method is proposed for speckle reduction in the SAR image. A numerical additive operator splitting (AOS) scheme is used to efficiently ensure the filtering stability. A good performance is demonstrated by an example of SAR image in both reducing the noise and preserving important features at the same time. The result is also compared with traditional adaptive filtering algorithm based on local statistics. It shows good feasibility and validity of the proposed algorithm.
出处 《电波科学学报》 EI CSCD 2004年第4期405-408,463,共5页 Chinese Journal of Radio Science
基金 国家重点基础研究发展规划项目 (2 0 0 1CB30 94 0 6 ) 国家自然科学基金项目(4 0 0 710 6 2 ) 中国科学院知识创新工程重要方向项目 (KZCX2 30 9)
关键词 SAR 图像相干斑 去噪 AOS 非线性扩散 合成孔径雷达 SAR, denoising, AOS scheme, nonlinear diffusion
  • 相关文献

参考文献8

二级参考文献17

  • 1F.T.乌拉比 黄培康等(译).微波遥感(第二卷)[M].北京:科学出版社,1987..
  • 2[1]Oliver C, Quegan S. Understanding synthetic aperture radar images [M]. Artech House Inc., 685 Canton Street, Norwood, MA 02062, 1998.
  • 3[2]Hervet E, Fjortoft R MarthonP et al.. Comparison of wavelet-based and statistical speckle Filters[A]. In: Proc. SAR Image Analysis, Modelling and Techniques III, SPIE[C], Barcelona, Spain, September 1998:21~25.
  • 4[3]Hong Sun, Henri Maitre, and Bao Guan.Turbo Iterative technique for SAR image processing [A]. 2002 International Symposium on Information Theory and Its Applications (ISITA2002)[C]. 2002: 395~398.
  • 5[4]A Lopes, E Nezry, R Trouzi et al.. Maximum a posteriori speckle filtering and first order texture models in sar images[A]. Geoscience and Remote Sensing Symposium, 1990. IGARSS'90[C]. Remote Sensing Science for the Nineties. 10th Annual International, 1990.
  • 6[5]S Foucher, G Benie, J Boucher. Multiscale MAP Filtering of SAR Images[J]. IEEE, Trans. Image Processing, 2001,10(1):49~59.
  • 7[6]D Donoho. De-noising by Soft-Thresholding[J]. IEEE, Trans. Information Theory, 1995,41(3):613~627.
  • 8[7]R, R, Coifman, D,L,Donoho. Translation invariant de-noising[A]. In: Wavelets in Statistics of Lecture Notes in statistics 103[C]. New York: Springer-Verlag, 1994:125~150.
  • 9[8]A Bijaoui, Yanling Fang, Y Bobichon, et al.. The Analysis of SAR images by multiscale methods[A]. Image Processing, 1996. Proceedings, International Conference[C] , Lausanne, Switzerland vol 3 , 1996: 895 ~898.
  • 10[1]Gerig G, Kübler O, Kikinis R, et al. Nonlinear anisotropic filtering of MRI data. IEEE Trans Medi Imag, 1992,11(2):221-232

共引文献33

同被引文献25

  • 1徐戈,黄培荣,孙洪.一种基于图像分布的SAR图像边缘检测方法[J].电波科学学报,2005,20(2):160-163. 被引量:3
  • 2吴艳,王霞,廖桂生.基于小波域隐马尔可夫混合模型的SAR图像降斑算法[J].电波科学学报,2007,22(2):244-250. 被引量:4
  • 3A C Bovik. On Detecting Edge in Speckle Imagery[J]. IEEE Trans. on Acoustic Speech and Signal Processing, 1988, 36(10): 1618-1627.
  • 4S Osher and N Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics [M]. New York: Springer, 2003.
  • 5I Ayed, et al.. Multiregion level-set partitioning of synthetic aperture radar images[J]. IEEE Trans. on Pattern Analysis Machine Intelligence, 2005, 27 (5): 793-800.
  • 6D Mumford and J Shah. Boundary detection by minimizing functionals[A]. Proceedings of IEEE Coputer Society Conf. Computer Vision and Pattern Recognition[C]. New Jersey:IEEE,1985, 22-26.
  • 7V Caselles, et al.. A geometric model for active contours in image processing[J]. Numer. Math. , 1993, 66(1):1-31.
  • 8S Zhu and A Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell. , 1996, 18(9): 884-900.
  • 9S Geman and D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J]. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6(11) : 721-741.
  • 10L Vese and T Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. Int. J. Comput. Vis. 2002, 50(3): 271-293.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部