期刊文献+

PIV血流场显示测速技术 被引量:6

Particle image velocimetry techniques used in blood flow field analysis
下载PDF
导出
摘要 通过分析多普勒测速技术与粒子图像测速技术的区别,从一个新角度把PIV全流场测速技术应用于血液流场的研究中。用激光片光源照亮血流粒子场,再计算确定实验系统光学参数,以获得最佳流场图片。对流场分析常用的互相关算法进行改进,辅以曲面拟合和误差修正,获得了亚像素级的全流场速度的大小和方向,并进一步计算出血流场的涡量分布和剪切率分布。为了验证改进的算法,对日本视频协会提供的PIV-STD序列标准图像进行仿真计算和误差分析,与原算法相比其速度矢量图的误差降低了2个百分点,流场速度值的平均误差小于±1%。该结果表明文中建立的方法是有效的,并可推广用于其它的流场分析。 Through analyzing the difference between velocity detecting techniques based on Doppler principle and Particle Image Velocimetry (PIV), PIV full field velocity showing and diagnostic technology have been applied to study of blood flow field from a new aspect. The blood flow particle field is illuminated by a laser light sheet and optical parameters of the experimental system are selected to obtain the optimal flow field pictures. Through improving cross-correlation algorithm commonly used for analysis of flow field and curved surface fitting and error correction, the magnitude and direction of blood flow velocity with sub-pixel level is obtained. Vorticity distribution and stress rate distribution of blood flow field are further calculated. In order to demonstrate the improved algorithm, simulation and error analysis based on PIV-STD serial standard image provided by Nihon Video Association is carried out. Compared with the original algorithm, the error of speed vector diagram has been reduced by 2% and average speed error of flow field is less than 1%. The results show that the method proposed effective and can be extended to other flow field analysis.
出处 《光电工程》 CAS CSCD 北大核心 2004年第8期37-40,52,共5页 Opto-Electronic Engineering
关键词 粒子图像测速技术 血流场分析 互相关 曲面拟合 Particle Image Velocimetry Blood flow field analysis Cross-correlation Curved surface fitting
  • 相关文献

参考文献10

二级参考文献18

  • 1田村秀行.计算机图像处理技术[M].北京:北京师范大学出版社,1988..
  • 2史令启(译).数字信号处理的原理于应用[M].北京:国防工业出版社,1985..
  • 3Conchello J A,Yu Q. Parametric blind deconvolution of fluores-cence microscope images: Preliminary results. In:Proceedings ofSPIE(The International Society for Optical Engineering), 1996,2655.
  • 4Subbarai M, Wei T C, Surya G. Focused image recovery fromtwo defocused images recorded with different camera settings.IEEE Transactions on Image Processing , 1995, 7(12): 1613~1628.
  • 5Giannakis G B, Heath R W. Blind identification of multi-channelFIR blurs and perfect image restoration. IEEE Transactions onImage Processing, 2000,9(11) : 1877~1896.
  • 6Kundur D, Hatzinakos D. A novel blind deconvolution scheme.for image restoration using recursive filtering. IEEE Transac-tions on Signal Processing, 1998, 46(2) : 375~390.
  • 7Mesarovic V Z, Galatsanos N P, Katsaggelos A K. Regularizedconstrained total least squares image restoration. IEEE Transac-tions on Image Processing, 1995,4(8) ..1096~1108.
  • 8Ayers G R, Dainty J C. Iterative blind deconvolution method andits applications. Optics Letters, 1988, 13(7)..547~549.
  • 9孙仲康.快速富立叶变换及其应用[M].北京:人民邮电出版社,1982..
  • 10Wang Grantx,Experiments Fluids,1995年,18卷,358页

共引文献128

同被引文献43

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部