期刊文献+

一个新的GNSS模糊度估计类 被引量:2

A New Class of GNSS Ambiguity Estimators
下载PDF
导出
摘要 介绍了一类新的GNSS模糊度估计。因为该类遵循移去 恢复原理 ,称之为整数等变估计类。本文将说明整数等变估计类较整数估计类和线性无偏估计类的范围要大 ,同时给出一个相当有用的整数等变估计类的表达式。这个表达式揭示了整数等变估计类的结构 ,并显示该表达式如何在浮点解的基础上实现整数等变估计。 A new class of GNSS ambiguity estimator is introduced in this paper. This class is referred to as the class of integer equivariant(IE) estimators since it still obeys the important integer remove-restore principle of integer estimation. It is shown that the IE-class is larger than the class of integer estimators as well as larger than the class of linear unbiased estimators. We will also give a useful representation of IE-estimators. This representation reveals the structure of IE-estimators and shows how they operate on the ambiguity float solution. Finally, the best integer equivariant estimation is proposed.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第9期757-762,共6页 Geomatics and Information Science of Wuhan University
关键词 GNSS模糊度解 整数等变估计 最优整数估计 GNSS ambiguity resolution integer equivariant estimation best integer equivariant estimation
  • 相关文献

参考文献11

  • 1Hofmann-Wellenhof B, Lichtenegger H, Collins J. Global Positioning System:Theory and Practice. 5th ed. New York:Springer-Verlag,2001
  • 2Leick A. GPS Satellite Surveying. 2nd ed. New York:John Wiley,1995
  • 3Misra P, Enge P. Global Positioning System: Signals, Measurements, and Performance. Lincoln Massachusetts: Ganga-Jamuna Press, 2001
  • 4Parkinson B, Spilker J J. GPS: Theory and Application. Washington D C:AIAA, 1996
  • 5Strang G, Borre K. Linear Algebra, Geodesy, and GPS. Wellesley: Cambridge Press,1997
  • 6Teunissen P J G, Kleusberg A. GPS for Geodesy. 2nd Enlarged ed. New York:Springer-Verlag,1998
  • 7Teunissen P J G. Least-Squares Estimation of the Integer GPS Ambiguities. Invited Lecture, Section IV Theory and Methodology. IAG General Meeting, Beijing, 1993
  • 8de Jonge P J, Tiberius C C J M. The LAMBDA Method for Integer Ambiguity Estimation:Implementation Aspects. LGR Series,Delft,1996
  • 9Betti B, Crespi M, Sanso F. A Geometric Illustration of Ambiguity Resolution in GPS Theory and a Bayesian Approach. Manuscr. Geod., 1993,18:317~330
  • 10Gundlich B, Koch K R. Confidence Regions for GPS Baseline by Bayesian Statistics. Journal of Geodesy,2002,76:55~62

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部