期刊文献+

一种网格参数化的优化算法 被引量:3

An optimized algorithm of mesh parameterization
下载PDF
导出
摘要 网格参数化是数字几何处理 (Digital Geometry Processing)中的一个基本问题 .作者利用 Floater的具有保形权或均值权的凸线性组合参数化引入一种新的参数化的扭曲度量——点密度 ,以及网格上的最短切割路径来优化原来的参数化 .切割路径由网格上的一内点和网格上的一边界点连接而成 ,内点位于参数区域上最密集区域 ,也是扭曲最严重的区域 .具有最短切割路径的网格模型 ,被重新参数化成为一个具有较小扭曲的参数化 .最后给出实例说明了此方法是可行和有效的 。 Mesh parameterization is an essential problem of Digital Geometry Processing (DGP). It is introduced that a new metric of distortion and a shortest cut path over mesh using established shape-preserving or mean-value parameterization which starts with the densest vertex with large distortion of texture and ends with boundary vertex. Then the mesh with the shortest cut path which tries to reduce large parameterization distortion is reparameterized into an optimized form. A number of experimental results demonstrate the availability of the method.
出处 《浙江大学学报(理学版)》 CAS CSCD 2004年第5期538-543,共6页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目 ( 60 3 0 3 0 15 ) 国家重点基础研究发展规划资助项目 ( 2 0 0 2 CB3 12 10 1)
关键词 网格参数化 扭曲变形 最短切割路径 mesh parameterization distortion shortest cut path
  • 相关文献

参考文献11

  • 1SHEFFER A, STURLER E D. Smoothing an overlap grid to minimize linear distortion in texture mapping[J]. ACM Transactions on Graphics, 2002, 21 (4):874-890.
  • 2SHEFFER A. Skinning 3D meshes [J]. Graphical Models,2003, 65(5) :274-285.
  • 3PRAUN E, HOPPE H. Spherical parameterization and remeshing [J]. ACM Transactions on Graphics(Siggraph'03 Proceedings) ,2003,22(3): 340-349.
  • 4MAILOT J, YAHIA H, VERRSOUST A. Interactive Texture Mapping[A]. Computer Graphics Proceedings Annual Conference Series [C]. New York:ACM SIGGRAPH,1993. 27-34.
  • 5HORMANN K, LABSIK U, GREINER G. Remeshing triangulated surfaces with optimal parameterizations[J]. Computer Aided Design, 2001, 33(11):779-788.
  • 6HORMANN K, GREINER G. MIPS: an efficient global parameterization method[A]. Curves and Surface Design Saint-Malo [C]. Vancouver: Vancouver University Press, 2000. 153-162.
  • 7DESBRUN M, MEYER M, ALLIEZ P. Intrinsic parameterizations of surface mesh[J]. Computer Graphics Forum, 2002,12:209-218.
  • 8ECK M, DEROSE T, DUCHAMP T, et al. Multiresolution analysis of arbitrary meshes[A]. Computer Graphics Proceedings Annual Conference Series[C]. New York: ACM SIGGRAPH,1995. 173-182.
  • 9FLOATER M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14: 231-250.
  • 10FLOATER M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20: 19- 27.

同被引文献27

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部