摘要
矩阵的初等行变换是线性代数最基本的计算方法,特别在解方程、矩阵求逆、求秩、向量组相关性分析中都是不可缺少的.本文介绍矩阵的简单形及其在向量组的线性相关性的分析和应用及整可逆阵的求法.
The variety of elementary row of matrix is the basic calculating method in Linear Algebra, it is necessary especially in equation-solution, solution of inverse-matrix, rank-solution, and in the relevant analyses of vector group . This paper introduces the simple form of matrix and its linear-relevant analyses in vector groups, its applications and the solution of complete invertible matrix.
出处
《玉林师范学院学报》
2004年第3期19-22,共4页
Journal of Yulin Normal University
关键词
线性代数
初等行变换
简单形
应用
linear algebra
variety of elementary row
simple form
application