期刊文献+

几类图弱控制的广义束缚数 被引量:2

The general bondage number of weak bomination for some graphs
下载PDF
导出
摘要 对任一图G,其弱控制的广义束缚数定义为:b′w(G)=min{t| F E(G),如果|F|=t,则有γw(G-F)>γw(G)}.本文给出了几类图弱控制的广义束缚数的精确值.称b′w(G)=1图为弱控制去边临界图,简记为γw-ER-critical,本文研究了正则图是弱控制去边临界图的充要条件,以及一般图的必要条件. For any graph G, the general bondage number of γ\-w, b′\-w(G) is defined to be the minimum cardinality of every arbitrary set of edges whose removal from G results in graph G′ satisfying γ\-w(G′)>γ\-w(G). We give exact values of b′\-w(G) for some classes of graphs. And we consider the special case of b′\-w(G), that b′\-w(G) is equal to 1, we call G is edge-removal-critical(ER-critical). Then give necessary and sufficient condition for regular graphs to be γ\-w-ER-critical and necessary condition for general graph to be γ\-w-ER-critical.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期265-267,271,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10371048) 教育部科学技术研究重点项目(02139).
关键词 弱控制 弱控制的广义束缚数 弱控制的去边临界图 week domination general bondage number of γ\-w γ\-w-ER-critical
  • 相关文献

参考文献5

  • 1刘立平,张伟华.AutoCAD三维建模在高职《工程制图》教学中的应用与实践[J].硅谷,2010,3(22):108-108. 被引量:5
  • 2Grobler P J P, Mynhardt C M. Domination parameters and edge-removal-critical graphs[J]. Discrete Math, 2001, 231: 221-239.
  • 3Kang Liying, Yuan Jinjiang. Bondage number of planar graphs[J]. Discrete Math, 2000, 222: 191-198.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications[M]. New York: The Macmillan Press LTD, 1976.
  • 5Renu G D, Laskar C. The bondage and reinforcement numbers of γf for some graphs[J]. Discrete Math,1997, 167/168: 249-259.

二级参考文献3

共引文献5

同被引文献9

  • 1Bondy J A, Murty U S R. Graph theory with applications [M]. New York: The Macmillan Press,1976.
  • 2Fink J F, Acobson M S, Kinch L F, et al. The bondage number of a graph[J]. Discrete Math, 1990,86:45-57.
  • 3Domke G, Laskar R C. The bondage and reinforcement numbers of 7 for some graphs [J]. Discrete Math, 1999, (167/168):249-259.
  • 4毛经中,李德英.图论基础[M].华中师范大学出版社,1997.
  • 5Fink J F, Jacobson M S, Lael F K, et al. The bondage numder of a graph[J]. Discrete Math, 1990,86 : 47-57.
  • 6Domke G S, Laskar R C. The bondage and reinforcement numbers of γf for some graphs[J]. Discrete Math, 1997, 167/168 : 249-259.
  • 7Grobler P J P, Mynhardt C M. Domination parameters and edge-removal-critical graphs[J]. Discrete Math, 2001, 231:221-239.
  • 8Bondy J A, Murty U S R. Graph theory with applications[M]. New York: The macmillan press LTD, 1976.
  • 9吴亚平,范琼.树的四类控制参数的束缚数[J].数学杂志,2004,24(3):267-270. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部